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Abstract

A language is prefix-continuous if it satisfies the condition that, if a word
w and its prefix u are in the language, then so is every prefix of w that
has u as a prefix. Prefix-continuous languages include prefix-closed languages
at one end of the spectrum, and prefix-free languages, which include prefix
codes, at the other. In a similar way, we define suffix-, bifix-, factor-, and
subword-continuous languages and their closed and free counterparts. We
generalize these notions to arbitrary binary relations on Σ∗. This provides a
common framework for diverse languages such as codes, factorial languages
and ideals. We examine the relationships among these languages and their
closure properties.

1 Introduction

Prefix-continuous languages were introduced in connection with trace-assertion
specifications [6, 7], where a software module is modeled by an automaton in which
the states are represented by words over the input alphabet. It was shown in [6],
for deterministic automata, that the automaton is well-behaved if the set of words
representing the states is prefix-continuous. This result was extended to nonde-
terministic automata in [5]. Applications of these methods to the specification of
software modules were discussed in [7]. In this paper we consider some theoretical
aspects of prefix-continuous and related languages.

Let Σ be an alphabet, and Σ∗, the free monoid generated by Σ, with ǫ as the
empty word. A language over an alphabet Σ is any subset of Σ∗. If L ⊆ Σ∗, the
complement of L with respect to Σ∗ is denoted by L. When convenient, we use
the customary notation for regular expressions, with + for union, juxtaposition for
concatenation, and ∗ for Kleene closure.

We generalize the concept of prefix-continuity to continuity with respect to an
arbitrary binary relation. Let E be a binary relation on Σ∗; if u E v and u 6= v, we
write u ⊳ v. Let D be the converse relation, that is, let u D v if and only if v E u.

∗This research was supported by the Natural Sciences and Engineering Research Council of
Canada under grant no. OGP000871.
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Definition 1 A language L is E-continuous1 if u E v, u E w, and v E w with
u,w ∈ L imply v ∈ L. It is E-free if v ⊳ w and w ∈ L imply v 6∈ L. It is E-closed
if v E w and w ∈ L imply v ∈ L. It is D-closed if v D w and w ∈ L imply v ∈ L.

If the binary relation is understood, we call a language simply continuous,
free, closed, or converse-closed . Notice that E-free and E-closed languages are
two extreme special cases of E-continuous languages at the opposite ends of the
continuous spectrum. Note also that a language is D-continuous if and only if it
is E-continuous. Similarly, a language is D-free if and only if it is E-free. Hence
we get nothing new by considering the converse relation in these two cases. In the
third case, of D-closed languages, we do get a new class.

There is an extensive literature on codes characterized as antichains with respect
to binary relations in free monoids; see, for example, [8, 10, 14] and the references
contained therein. It is not our purpose in this paper to deal with this topic
in depth, but only to point out how various classes of these languages fit into
the framework of continuous languages, and to study the closure properties of
continuous languages.

We use the following terminology and notation. If u, v,w ∈ Σ∗ and w = uv,
then u is a prefix of w and v is a suffix of w. If v is a prefix of w, we write v ≤ w;
if also v 6= w, then v < w. If v is a suffix of w, we write v � w; if also v 6= w,
then v ≺ w. If w = xvy for some v, x, y ∈ Σ∗, then v is a factor of w. Note that
a prefix or suffix of w is also a factor of w. If v is a factor of w, we write v ⊑ w;
if also v 6= w, then v ⊏ w. If w = w0a1w1 · · · anwn, where a1, . . . , an ∈ Σ, and
w0, . . . , wn ∈ Σ∗, then v = a1 · · · an is a subword of w; note that every factor of w

is a subword of w.2 If v is a subword of w, we write v |= w; if also v 6= w, then
v ⊢ w. The relations ≤, �, ⊑, and |= are partial orders on Σ∗.

We apply Definition 1 to four special cases:

E is ≤: If we use the relation ‘is a prefix of’, then we get prefix-continuous lan-
guages [6]. Prefix-free languages, except {ǫ}, are prefix codes [4], prefix-closed
languages3 are complements of right ideals, and converse-closed languages are
the right ideals (have the form LΣ∗, L ⊆ Σ∗; see Proposition 7).

E is �: If we use the relation ‘is a suffix of’, then we get the suffix-continuous
languages. Suffix-free languages, except {ǫ}, are suffix codes [4], suffix-closed
languages are complements of left ideals, and converse-closed languages are
the left ideals (Σ∗L; see Proposition 7).

E is ⊑: If we use the relation ‘is a factor of’,4 we get factor-continuous languages.
Factor-free languages, except {ǫ}, are infix codes [10, 14], factor-closed lan-
guages are factorial languages [11], which are complements of two-sided ideals,
and converse-closed languages are the ideals (Σ∗LΣ∗; see Proposition 6).

1Languages continuous with respect to a partial order have been called ‘convex’ in [14].
2The word ‘subword’ is often used to mean ‘factor’; here by a ‘subword’ of w we mean a

subsequence of w.
3Languages closed under the taking of nonempty prefixes and suffixes have been called ‘prefixial’

and ‘suffixial’, respectively in [2].
4This is called the ‘infix order’ in [8, 10, 14].

2



E is |=: If the relation is ‘is a subword of’,5 we get subword-continuous languages.
Subword-free languages, except {ǫ}, are hypercodes [10, 14], subword-closed
languages are of the form L = K =

⋃
a1···ai∈L Σ∗a1Σ∗ · · · aiΣ∗, and converse-

closed languages are of the form K above (see Proposition 8).

≤ and �: If a language is both prefix- and suffix-continuous it is bifix-continuous.
If it is both prefix- and suffix-free it is bifix-free; it is then a bifix code.6 If it
is both prefix- and suffix-closed, it is bifix-closed.

The remainder of the paper is structured as follows. In Section 2 we show the re-
lations among the prefix-continuous and suffix-continuous classes of languages and
their subclasses. In Section 3 we study the closure properties of the X-continuous,
X-closed and X-free classes of languages, where X stands for prefix, suffix, bifix,
factor or subword. All three of these types of classes are closed under intersection,
and the X-closed languages are closed under union. The prefix (suffix) classes
are closed under left (right) quotient, and the subword classes are closed under
both types of quotients. All classes are closed under inverse homomorphism. The
closure properties of X-converse-closed classes are the same as those of the X-
closed classes, as is shown in Section 4. Closure under concatenation is studied in
Section 5: all the X-free and X-closed classes are closed under concatenation.

2 Continuous Languages

For convenience, we first consider E-continuous, E-free, and E-closed languages,
where E ranges over {≤,�,⊑, |=}. If a nonempty language is prefix-continuous
(respectively, suffix-, bifix-, factor-, or subword-continuous), then it is prefix-closed
(respectively, suffix-, bifix-, factor-, or subword-closed) if and only if it contains ǫ.
The empty language ∅ and the language {ǫ} vacuously satisfy the E-continuous, E-
free, and E-closed conditions. Also, since ǫ is a prefix, suffix, factor, and subword
of every word, ∅ and {ǫ} are the only two languages that are both E-free and
E-closed.

We use the term “factor-closed” to keep our terminology consistent. However,
these languages are known as factorial languages. Factorial languages are defined
as factor-closed languages, for example, in [2, 11], and as bifix-closed languages, for
example, in [12]. This is justified in view of the following:

Remark 1 A language is factor-closed if and only if it is bifix-closed.

Proof: If L is factor-closed, then it is also bifix-closed, since every prefix and suffix
is also a factor. Conversely, let L be a bifix-closed language and let w ∈ L. Suppose
v is any factor of w = xvy; then xv ∈ L since xv is a prefix of w, and v ∈ L because
v is a suffix of xv. Therefore L is factor-closed.

5This order is called the ‘embedding order’ in [8, 10, 14].
6The word ‘bifix’ is sometimes used to describe a word that is both a prefix and a suffix. Here

we follow [9, 14]. The term ‘biprefix’ is used in [4].
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Factorial languages have received considerable attention. For example, their
decompositions are studied in [2], their combinatorial properties in [11], and their
complexity issues in [13]. We return to these languages later.

Figure 1 shows the various classes of languages partially ordered under set
containment, where P , S, B, F , and W , stand for prefix, suffix, bifix, factor, and
subword, respectively, PC, PF and PCL stand for prefix-continuous, prefix-free,
and prefix-closed languages, etc. The classes in rectangular boxes are closed under
concatenation; we discuss this later.

languages

PC

BC

SC

PF SF

BF

FF

FC

PCL

BCL

FCL

SCL

WC

WFWCL

Codes

Factorial

Figure 1: Classes of continuous languages.

The proof of the following result is given in [1]. The special case of languages
over a one-letter alphabet is also discussed there.

Proposition 1 All containments shown in Fig. 1 are proper, and there are no
other containments, except those implied by transitivity.

Remark 2 PC ∩ SCL = PCL ∩ SCL = BCL = SC ∩ PCL.

Proof: By definition, BCL = PCL ∩ SCL. From Fig. 1, we have PC ∩ SCL ⊇
BCL. Conversely, if L is suffix-closed, then it contains ǫ, which is also a prefix of
every word; thus, if L is also prefix-continuous, then it is prefix-closed, and hence
bifix-closed. The last equality follows by left-right symmetry.

3 Closure in E-Continuous Languages

We first consider the closure properties of continuous, free, and closed classes of
languages. Converse-closed classes are studied in Section 4.

Proposition 2 If K,L ⊆ Σ∗ are E-continuous (E-free, or E-closed), then so is
M = K ∩ L.
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Proof: If M is not E-continuous, there exist u,w ∈ M and v 6∈ M such that u⊳ v,
u ⊳ w, and v ⊳ w. Since u,w ∈ K and u,w ∈ L, and K and L are E-continuous,
we have v ∈ K and v ∈ L, which contradicts that v 6∈ M .

If M is not E-free, there exist v,w ∈ M such that v ⊳ w. Since v,w ∈ K, this
contradicts that K is E-free.

If M is not E-closed, there exist w ∈ M , v 6∈ M such that v ⊳ w. Then either
v 6∈ K or v 6∈ L. In the first case, w ∈ K and v 6∈ K contradicts that K is E-closed.
In the second case, L cannot be E-closed.

Corollary 1 All the classes in Fig. 1 are closed under intersection.

The following is easily verified:

Proposition 3 If K,L ⊆ Σ∗ are E-closed, then so is K ∪ L.

Corollary 2 All the closed classes, PCL, SCL, BCL = FCL, and WCL, are
closed under union.

The remaining classes in Fig. 1 are not closed under union. Let K = {ǫ},
L = {aa}; both languages are X-continuous and X-free for all X ∈ {P, S,B, F,W}.
However, K ∪ L is neither X-continuous nor X-free.

None of the classes is closed under complementation. The language L = {a} is
in XC for all X ∈ {P, S,B, F,W}, but its complement is not. Also, L is in XF ,
but L is not. The language K = {ǫ} is in XCL, but K is not.

If x ∈ Σ∗ and L ⊆ Σ∗, then the left quotient of L by x is x−1L = {w ∈ Σ∗ |
xw ∈ L}. The right quotient of L by x is Lx−1 = {w ∈ Σ∗ | wx ∈ L}.

A binary relation is left-invariant (right-invariant) if u E v implies xu E xv

(ux E vx).7

Proposition 4 If E is left-invariant, and L is E-continuous (E-free or E-closed),
then M = x−1L is E-continuous (E-free or E-closed), for any x ∈ Σ∗. If E is
right-invariant, and L is E-continuous (E-free or E-closed), then M = Lx−1 is
E-continuous (E-free or E-closed), for any x ∈ Σ∗.

Proof: Suppose L is E-continuous. If M is not E-continuous, then there exist
u,w ∈ M and v 6∈ M such that u ⊳ v, u ⊳ w, and v ⊳ w. If E is left-invariant,
then xu ⊳ xv, xu ⊳ xw, and xv ⊳ xw, and xu and xw ∈ L, while xv 6∈ L. This
contradicts that L is E-continuous.

Suppose L is E-free. If M is not E-free, there exist v,w ∈ M such that v ⊳ w;
then xv, xw ∈ L. If E is left-invariant, then xv ⊳ xw, which contradicts that L is
E-free.

Suppose L is E-closed. If M is not E-closed, there exist w ∈ M , v 6∈ M such
that v ⊳ w; then xw ∈ L and xv 6∈ L. If E is left-invariant, then xv ⊳ xw, which
contradicts that L is E-closed.

The claim for the case where E is right-invariant follows by duality.

7The terms ‘left compatible’ and ‘right compatible’ are used in [10, 14].
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Corollary 3 The classes PC, PCL and PF are closed under left quotient, SC,
SCL and SF are closed under right quotient, and WC, WCL and WF are closed
under both quotients.

Remark 3 The classes BC, BF , FC, FCL and FF are not closed under either
type of quotient. For let L = {ǫ, a, b, ab, ba, aba}; then L is bifix-continuous, factor-
continuous and factor-closed, but a−1L = {ǫ, b, ba} and La−1 are not. Also, L =
{bb, bab} is bifix-free and factor-free, but b−1L = {b, ab} and Lb−1 are neither.

If S is a set, then 2S is the set of all subsets of S. Let Σ and ∆ be alphabets.
A homomorphism is a map h : Σ∗ → ∆∗ such that h(uv) = h(u)h(v) for all
u, v ∈ Σ∗. If L ⊆ Σ, then h(L) =

⋃
w∈L{h(w)}. The inverse homomorphism of h is

h−1 : h(Σ∗) → 2Σ∗

defined by h−1(x) = {w ∈ Σ∗ | h(w) = x}, for all x ∈ h(Σ∗). If
L ⊆ h(Σ∗), then the inverse image of L under h is h−1(L) = {w ∈ Σ∗ | h(w) ∈ L}.
A substitution is a map s : Σ∗ → 2∆∗

such that s(ǫ) = {ǫ}, s(uv) = s(u)s(v) for all
u, v ∈ Σ∗, and s(L) =

⋃
w∈L{s(w)}.

None of the classes is closed under homomorphism. If Σ = ∆ = {a}, h(a) =
aa, L = {ǫ, a}, then h(L) = {ǫ, aa}, L is in XC and in XCL, for all X ∈
{P, S,B, F,W}, but h(L) is not. Also, if L = {a, b}, h(a) = ǫ, h(b) = a, then
h(L) = {ǫ, a}. Now L is in XF , but h(L) is not. It follows that none of the classes
is closed under substitution.

Let E be a binary relation on Σ∗, and E′, a binary relation on ∆∗. Then h is
a relation homomorphism8 if u E v implies h(u) E′ h(v).

Proposition 5 Let (Σ∗,E) and (∆∗,E′) be free monoids with binary relations,
let h : Σ∗ → ∆∗ be a relation homomorphism, and let K ⊆ h(Σ∗). If K is E′-
continuous (E′-free, or E′-closed), then L = h−1(K) is E-continuous (E-free, or
E-closed).

Proof: Suppose K is E′-continuous, but L is not E-continuous. Then there exist
u,w ∈ L, v 6∈ L such that u ⊳ v, u ⊳ w, and v ⊳ w. Since h is a relation homomor-
phism, we also have h(u), h(w) ∈ K, h(v) 6∈ K, and h(u)⊳′ h(v), h(u)⊳′ h(w), and
h(v) ⊳′ h(w), which contradicts that K is E′-continuous.

Suppose K is E′-free, but L = h−1(K) is not E-free. Then there exist v,w ∈ L

such that v ⊳ w. Since h is a relation homomorphism, we also have h(v) ⊳′ h(w),
which contradicts that K is E′-free.

Suppose K is E′-closed, but L = h−1(K) is not E-closed. Then there exist
w ∈ L, v 6∈ L such that v ⊳ w. If h is a relation homomorphism, then h(w) ∈ K,
h(v) 6∈ K, and h(v) ⊳′ h(w), which contradicts that K is ⊳′-closed.

Corollary 4 All the classes in Fig. 1 are closed under inverse homomorphism.

Proof: If u is a prefix (suffix, factor, or subword) of v and h is a homomorphism,
then h(u) is a prefix (suffix, factor, or subword) of h(v). Thus, in all cases we have
a relation homomorphism.

8In the terminology of [8], the relation E is compatible with h (in the case where E = E
′).
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4 Converse-Closed Languages

We now consider the remaining continuity property: converse-closure. The follow-
ing result is proved in [11]:

Proposition 6 A language L is factorial (that is, factor-closed) if and only if it is
the complement of a two-sided ideal, that is, if and only if L = Σ∗KΣ∗, for some
language K. Moreover, K can be taken to be regular if L is regular.

We have analogous results for prefix-closed and suffix-closed languages:

Proposition 7 A language L is prefix-closed (suffix-closed) if and only if it is the
complement of a right (left) ideal, that is, if and only if L = KΣ∗, (L = Σ∗K) for
some language K. Moreover, K can be taken to be regular if L is regular.

Proof: The proof parallels the proof of Proposition 6 in [11]. Let P (L) be the
set of all prefixes of words in L; thus, if L is prefix-closed, then L = P (L). Now
let K = P (L). One verifies that u ∈ K implies uv ∈ K for all v ∈ Σ∗, that is,
K = KΣ∗, and L = P (L) = K = KΣ∗. Note that P (L) is regular if L is regular.
Conversely, suppose L = KΣ∗ for some K, w = uv ∈ L, and u 6∈ L. Then u ∈ KΣ∗,
u = u′u′′, for some u′ ∈ K, u′′ ∈ Σ∗, and w = u′u′′v must also be in KΣ∗, which is
a contradiction. Thus L is prefix-closed.

A dual argument proves the result for suffix-closed languages.

Proposition 8 A language L is subword-closed if and only if it is the complement
of a language of the form M =

⋃
a1···ai∈K Σ∗a1Σ

∗ · · · aiΣ
∗, for some language K.

Moreover, K can be taken to be regular if L is regular.

Proof: The proof also parallels the proof of Proposition 6 in [11]. Let W (L) be
the set of all subwords of words in L; thus, if L is subword-closed, then L = W (L).
Now let K = W (L). For a1, . . . , ai ∈ Σ, a1 · · · ai ∈ K implies w0a1w1 · · · aiwi ∈
K for all w0, . . . , wi ∈ Σ∗, that is, K =

⋃
a1···ai∈K Σ∗a1Σ

∗ · · · aiΣ
∗ = M , and

L = W (L) = K. Note that W (L) is regular if L is regular. Conversely, suppose
L = M =

⋃
a1···ai∈K Σ∗a1Σ∗ · · · aiΣ∗ for some K, w = w0b1w1 · · · bnwn ∈ L, and

v = b1 · · · bn 6∈ L, for w0, . . . , wn ∈ Σ∗ and b1, . . . , bn ∈ Σ. Then v ∈ M and v has
a subword, say u ∈ K. Hence w also has u as a subword, and w ∈ M , which is a
contradiction.

For example, let K = {aa}, and M = Σ∗aΣ∗aΣ∗. Then M = ǫ + a + b∗ + b∗ab∗

is subword-closed.

Proposition 9 A language L is D-closed if and only if it is the complement of a
E-closed language.

Proof: Suppose L is D-closed; then v ⊲ w and w ∈ L implies v ∈ L. Thus v ⊲ w

and v 6∈ L implies w 6∈ L. Equivalently, w ⊳ v and v ∈ L implies w ∈ L, that is, L

is E-closed. Similarly, if L is E-closed, then L is D-closed.

Note that the languages ∅ and Σ∗ are both E-closed and D-closed.
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Propositions 6–8 provide characterizations of E-closed languages for the cases
where E is ≤, �, ⊑, and |=.

For X ∈ {P, S, F,W}, let XCC be the the class of converse-closed languages
corresponding to the prefix, suffix, factor, and subword relations, respectively. Sim-
ilarly, let XC represent the continuous classes and XCL, the closed classes.

Remark 4 If L ⊆ Σ∗ is D-closed, then it is E-continuous.

Proof: This follows, because D-closure is a special case of D-continuity which
coincides with E-continuity.

Corollary 5 We have XCC ⊆ XC for all X ∈ {P, S, F,W}.

ideals

PC

FC

SC

WC

PCL SCL

WCL

FCL

SCCPCC

FCC

WCC

TR
′TR

ideals

left
ideals

right

Figure 2: Classes of converse-closed languages.

The classes XCC in Fig. 2 are the converse-closed classes. (We explain TR

and TR′ later.) Each converse-closed class XCC = {L | L ∈ XCL} is in 1-
1 correspondence with the corresponding closed class. Note that each class XC

contains languages that are not in XCL ∪ XCC ∪ XF . For example, {a, aa} is in
XC but it is not in XCL ∪ XCC ∪ XF , for all X ∈ {P, S, F,W}.

Proposition 10 If K,L ⊆ Σ∗ are D-closed, then so are K ∩ L and K ∪ L. If
D is left-invariant, and L is D-closed, then x−1L is D-closed, for any x ∈ Σ∗.
The same holds if ‘left’ is replaced by ‘right’ and ‘x−1L’ by ‘Lx−1’. Let (Σ∗,E)
and (∆∗,E′) be free monoids with binary relations, let h : Σ∗ → ∆∗ be a relation
homomorphism, and let K ⊆ h(Σ∗). If K is D′-closed, then h−1(K) is D-closed.

Proof: This follows by Propositions 2–5.

Corollary 6 All the classes of the form XCC are closed under intersection, union,
and inverse homomorphism. Moreover, PCC is closed under left quotient, SCC

is closed under right quotient, and WCC, under both.
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Note that FCC is not closed under either quotient. Let E be ⊑, let Σ = {a, b},
and let L = Σ∗abaΣ∗. Then L is ⊒-closed, but K = a−1L = Σ∗abaΣ∗ + baΣ∗ is
not, because ba ∈ K, but bba 6∈ K. Symmetrically, La−1 is not ⊒-closed.

No class XCC is closed under homomorphism. For let Σ = ∆ = {a, b}, h(a) =
h(b) = b, and L = {ǫ, a}. Then L ∈ XCL and L = (b + aa + ab)Σ∗ = Σ∗(b +
aa + ab) = Σ∗(b + aa + ab)Σ∗ = Σ∗bΣ∗ + Σ∗aΣ∗aΣ∗ + Σ∗aΣ∗bΣ∗ ∈ XCC, for all

X ∈ {P, S, F,W}. However, h(L) = bb∗, and K = h(L) = ǫ + Σ∗aΣ∗ is not in
XCL, since b 6∈ K.

Remark 5 All the classes of the form XCC are closed under concatenation, be-
cause we have (LΣ∗)(KΣ∗) = (LΣ∗K)Σ∗, etc.

4.1 Transitive Sofic Languages

Factorial languages contain an interesting subclass that deserves to be mentioned.
For details we refer the reader to the literature [3, 4, 12]. A language M ⊆ Σ∗

is a monoid if it contains ǫ and is closed under concatenation. A monoid is very
pure if uv, vu ∈ L implies u, v ∈ L. A factorial language is called sofic if it is
regular [3]. A language L is transitive if for all u,w ∈ L, there exists x ∈ Σ∗ such
that v = uxw ∈ L. Let F (L) be the set of all factors of words in L. Transitive
sofic languages constitute the class TR in Fig. 2, and TR′ is the class of their
complements. The following characterization is given in [3]:

Proposition 11 A language L is sofic and transitive if and only if there exists a
very pure regular language M which is a monoid such that L = F (M).

Example 1 Let Σ∗ = {a, b, c}, let M = (ab∗c + b)∗, and let L = F (M). One
verifies that L = (ǫ + b∗c)(b + ab∗c)∗(ǫ + ab∗) = Σ∗(ab∗a + cb∗c)Σ∗. Here the
language G = ab∗c + b is a circular code [4] and is a minimal generating set of M .
The monoid M = G∗ is very pure, and L = F (M) is transitive.

Proposition 12 Let h : Σ∗ → ∆∗ be a homomorphism, let K ⊆ h(Σ∗) and let
L = h−1(K). If K is a transitive sofic language then so is L.

Proof: Since K is regular, so is L, since regular languages are closed under inverse
homomorphism. Suppose that u and w are in L, and let h(u) = x, h(w) = z. Since
K is transitive, for every x, z ∈ K there is a y ∈ ∆∗ such that xyz ∈ K. Since K

is factorial, also y ∈ K. So there exists v ∈ L such that h(v) = y. Since h(uvw) =
h(u)h(v)h(w) = xyz ∈ K, uvw ∈ L, and we have shown that L is transitive.
Finally, if uvw ∈ L and v 6∈ L, then h(uvw) ∈ K and h(v) 6∈ K, contradicting that
K is factorial. Hence L is also factorial. Altogether, L is transitive sofic.

Transitive sofic languages are not closed under either quotient, intersection,
union, complement and concatenation. Let Σ = {a, b, c, d, e}, let L be the transitive
sofic language L of Example 1, and let K be a similar language, K = (ǫ + e∗c)(e +
de∗c)∗(ǫ+de∗). Then L∩K = ǫ+ c, which is not transitive. Also, for the language
L of Example 1, cac ∈ a−1L, but a 6∈ a−1L; hence a−1L is not factorial. Moreover,
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let Σ = {a, b}, K = a∗, and L = b∗. Then K and L are transitive, but K ∪ L and
KL are not. We have a, b ∈ K ∪ L, but there is no x ∈ Σ∗ such that axb ∈ K ∪ L.
Also, ab ∈ KL, but there is no x ∈ Σ∗ such that abxab ∈ L. The complement of L

is not factorial, since ǫ 6∈ L.

5 Concatenation in Free and Closed Languages

The next example illustrates that, in general, E-closed and E-free languages are
not closed under concatenation.

Example 2 Suppose u E v if and only if either u = v or |u| = |v| and u precedes
v in the lexicographic order. Thus, for Σ = {a, b}, we have a⊳ b, aa⊳ ab⊳ ba⊳ bb,
aaa⊳aab⊳aba⊳ · · ·⊳bbb, etc. Let K = {a, bb}; then K is E-free. However, KK =
{aa, abb, bba, bbbb} is not. Also, if L = {aa, ab}, then L is E-closed. However,
LL = {aaaa, aaab, abaa, abab} is not. Hence, for this binary relation, E-closed and
E-free languages are not closed under concatenation.

A binary relation E is propagating if x1x2 ⊳ y1y2 implies that

(x1 ⊳ y1) ∨ (y1 ⊳ x1) ∨ (x2 ⊳ y2) ∨ (y2 ⊳ x2),

for all x1, x2, y1, y2 ∈ Σ∗, where ∨ denotes disjunction.

Proposition 13 If E is propagating, and K and L are E-free, then so is KL.

Proof: Suppose K and L are E-free, but M = KL is not. Then there are x1, y1 ∈
K, x2, y2 ∈ L such that x1x2 ⊳ y1y2. Since E is propagating, either x1 and y1 are
unequal and comparable under E, or x2 and y2 are. Thus either K or L is not
E-free, which is a contradiction.

Lemma 1 The binary relations ≤, �, ⊑ and |= are propagating.

Proof: Suppose x1x2 < y1y2; then x1x2v = y1y2, where v ∈ Σ∗ is nonempty. If
x1 < y1 or x1 > y1, the condition of the lemma is satisfied. If x1 = y1, then
x2 < y2, and the lemma holds. A symmetric argument works for �.

Suppose x1x2 ⊏ y1y2; then ux1x2v = y1y2, for some u, v ∈ Σ∗, where uv 6= ǫ.
If ux1 < y1, then x1 ⊏ y1. If ux1 > y1, then x2 ⊏ y2. If ux1 = y1 and u 6= ǫ, then
x1 ⊏ y1. If ux1 = y1 and u = ǫ, then x1 = y1, and x2 ⊏ y2, since v 6= ǫ.

If x1x2 ⊢ y1y2, then x1 = a1 · · · aj , x2 = aj+1 · · · an, for some j, and y1 =
v0a1v1 · · · aiv

′

i and y2 = v′′i ai+1vi+1 · · · anvn, for some i, where vi = v′iv
′′

i , v0, . . . , vn ∈
Σ∗, a1, . . . , an ∈ Σ, and v1 · · · vn 6= ǫ. If j < i, then x1 ⊢ y1. If j > i, then x2 ⊢ y2.
If j = i, and v0v1 · · · v

′

i 6= ǫ, then x1 ⊢ y1; otherwise x2 ⊢ y2.

Corollary 7 The prefix-, suffix-, bifix-, factor-, and subword-free classes are closed
under concatenation.
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We now consider E-closed languages. A binary relation E is factoring if xEy1y2

implies that x = x1x2 for some x1, x2 ∈ Σ∗ such that x1 E y1, x2 E y2.

Proposition 14 If E is factoring, and K and L are E-closed, then so is KL.

Proof: Suppose K and L are E-closed, but M = KL is not. Then there exist
x 6∈ M , y1 ∈ K, y2 ∈ L such that x ⊳ y1y2. Since E is factoring, x = x1x2, where
x1 E y1 and x2 E y2. If K and L are E-closed, then x1 ∈ K, x2 ∈ L, and x ∈ M—a
contradiction.

Lemma 2 The binary relations ≤, �, ⊑ and |= are factoring.

Proof: Suppose x ≤ y1y2; then xv = y1y2 for some v ∈ Σ∗. For x ≤ y1, since
ǫ ≤ y2, we have x1 = x, and x2 = ǫ. If x > y1, then x = x1x2, where x1 = y1 and
x2v = y2. Then x1 ≤ y1, and x2 ≤ y2. A symmetric argument works for �.

Suppose x ⊑ y1y2; then uxv = y1y2, for some u, v ∈ Σ∗. If ux ≤ y1, then
x1 = x ⊑ y1 and x2 = ǫ ⊑ y2. If ux > y1 and u < y1, then x = x1x2, where
ux1 = y1 and x2v = y2. Then x1 ⊑ y1, and x2 ⊑ y2. If ux > y1 and u ≥ y1, then
x1 = ǫ ⊑ y1 and x2 = x ⊑ y2.

If x |= y1y2 = v, then x = a1 · · · an and v = v0a1v1 · · · anvn, where v0, . . . , vn ∈
Σ∗, a1, . . . , an ∈ Σ, and we have y1 = v0a1v1 · · · aiv

′

i and y2 = v′′i ai+1vi+1 · · · anvn,
for some i, where vi = v′iv

′′

i . If i = n, then x1 = x |= y1 and x2 = ǫ |= y2. If i < n,
then x = x1x2, where x1 = a1 · · · ai |= y1 and x2 = ai+1 · · · an |= y2.

Corollary 8 The prefix-, suffix-, bifix- (= factor-), and subword-closed classes are
closed under concatenation.

Remark 6 If K,L ⊆ Σ∗ are prefix- (suffix-, bifix-, factor-, or subword-) con-
tinuous, then KL, is not necessarily prefix- (suffix-, bifix-, factor-, or subword-)
continuous.

Proof: K = {a, ab} and L = {b, ab} are prefix-, suffix-, bifix-, factor-, and subword-
continuous, but KL = {ab, aab, abb, abab} is not, for aba, bab 6∈ KL.

A result similar to Proposition 4.1 in [4] also holds for prefix-closed languages [1]:

Proposition 15 Let Σ be an alphabet, let K, (Li)i∈I be nonempty subsets of Σ∗,
and let (Ki)i∈I be a collection of subsets of K such that K =

⋃
i∈I Ki. Let M =⋃

i∈I KiLi. If K and the Li’s are prefix-closed, then so is M .

6 Conclusions

We have provided a common framework for several classes of languages, and have
shown that their closure properties can be studied using binary relations on Σ∗.

Acknowledgment: We thank Larry Cummings, Helmut Jürgensen and Jeff
Shallit for useful comments and pointers to references.
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