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Let A be a finite alphabet and A* the free monoid generated by A. A language is any
subset of A*. Assume that all the languages of the form {a}, where q is either the empty
word or a letter in A, are given. Close this basic family of languages under Boolean opera-
tions; let #® be the resulting Boolean algebra of languages. Next, close #'© under
concatenation and then close the resulting family under Boolean operations. Call this new
Boolean algebra #), etc. The sequence #©, V. B* of Boolean algebras is called
the dot-depth hierarchy. The union of all these Boolean algebras is the family & of
star-free or aperiodic languages which is the same as the family of noncounting regular
languages. Over an alphabet of one letter the hierarchy is finite; in fact, #* = #V, We
show in this paper that the hierarchy is infinite for any alphabet with two or more letters.

INTRODUCTION

Let A be a finite, nonempty alphabet and A* the free monoid generated by 4, with
identity 1 (the empty word). Elements of A* are called words. The length of a word
x € A% is denoted by | x |. Note that | 1 | = 0. The concatenation of two words x, y € 4*
is denoted by xy.

Any subset of 4* is called a language. If L, and L, are languages then I; = A* — L,
is the complement of L, with respect to A*, L, UL, is the union, and L, N L, is the
intersection of L, and L,. Also L,L, = {we A* |w = %%y, ¥, €L, , x,€L,} is the
concatenation or product of L, and L, .

For any family & of languages let # M be the smallest family of languages containing
F U {{1}} and closed under concatenation. Similarly let #B be the smallest family
containing % and closed under finite union and complementation. Thus #M and #B
are the monoid and Boolean algebra, respectively, generated by %.

* This work was supported in part by the National Research Council of Canada under Grant
A-1617.
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Let .#Z = {{a} | ac A}; this is the finite family of languages whose elements are
languages consisting of one word of length 1. We will write £ U 1 for £ U {{1}}. We
use £ U 1 as the basic family of languages over the alphabet 4. Now define the following
sequence Z'0, W . A" .. of Boolean algebras:

B0 = (1U 2)B,
B® — (BE-V) MB = BOMBY, for k> 1.

This sequence (#0, #WY,..., #¥,...) is called the dot-depth hierarchy. A language L
is of (dot) depth O iff L € 9, and of depth k, k > 1, iff L € B* — %%~ Thus k is the
minimum number of concatenation levels necessary to define L.

Let of = { i3 B'®; clearly &/ is the smallest family containing % U 1 and closed
under Boolean operations and concatenation. This family is known as the aperiodic
or star-free family [4, 5], and is identical to the family of noncounting regular languages
[2, 4]. It was shown by Schiitzenberger [5] that £ C A* is star-free iff its syntactic
monoid is finite and group-free, i.e., contains only one-element subgroups.

For languages over a one-letter alphabet one easily verifies that the dot-depth hierarchy
is finite [1]. In fact, for 4 = {a},

A, = (1 U %) BMB = #Y,

where %, = {{a}}, &, is the family of aperiodic languages over a one-letter alphabet
and # is the corresponding family of depth-one languages.

It was conjectured in [3] that the dot-depth hierarchy is infinite if the alphabet has
two or more letters, i.e., that for each & 2> 0 there exists a language that is of depth
% + 1 but not of depth k. We prove this conjecture in this paper.

This paper is written by induction on k. In Sections 1-4 we treat the case £ = 1
which provides the basis. The induction step consists of Sections 1+—4+,

I. BASIS: £ =1
1. DecomprosiTiONs AND EQUIVALENCE RELATIONS

Let (A*)" be the Cartesian product of # copies of A%, for n > 1. Let m,: (4*%)* — A*
be defined as follows. For X = (x,,..., x,) € (4%)", 7, (X) = %, " x, . An n-decom-
position is any element X of (4*)". We say that X is an n-decomposition of x € A*
iff 7,(X) = x. Let 2,(x) be the set of all n-decompositions of x. Clearly £,(x) is a finite
set. For example, let 4 = {a, b} and x = aba. Then x has the following 2-decompositions:

2y(x) = {(1, aba), (a, ba), (ab, a), (aba, 1)}.

DeriniTION 1. Let ~ be any equivalence relation on 4*. We define an equivalence
relation ~ on (A*)" derived from ~ on A* as follows. If X = (x,,...,%,) and ¥ =

(3153 Ya) then
X~Y iff x,~y, for i =1,..,n.
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Let the equivalence class of ~ containing x € A* be [x]. Similarly, let the class of ~
containing X e(4*)* be [X]. Clearly [X] = [(x,,..., ¥,)] can be identified with

([%1],---» []). Let (
@) = {[X]] X € Q.(x)}

for all x € A*. Thus £,(x) is “the set of all n-decompositions of x that are distinct
with respect to the relation ~.”’ For example, consider the equivalence defined by:

x~1 iff x=1,

and for x 1,
X~y iff y#1.

Under this equivalence £2,(aba) = {([1], [2]), (], [a]), ([a], [])}-

DEFINITION 2. Let ~ be any equivalence relation on 4%, n > 1 and x,ye 4*.
(a) Define the binary relation C, on A*:
xCy il Q@) C ().
(b) Define the equivalence relation ~,, on 4*:
X~y iff x%—yandygx.
We will say that an equivalence relation ~ on 4* is 1-pure iff x ~ 1 implies x = 1
for all x e 4*.
ProposITION 1. Foralln = 1 and x, v, 2, , 3, € A¥,
(a) C,, is reflexive and transitive.
(b) If ~ is 1-pure then
x g yimpliesx ~y  and x ngl v implies x g ¥
(¢) If ~is a 1-pure congruence, then
® g y tmplies 2%, C 2, yz, .

Proof. (a) Obvious.

(b) Clearly X = (x,1,.,1)ef,(x). If xC,y there exists YeR,(y), ¥ =
(¥1 s++» ¥n) such that X ~ Y. Since ~ is I-pure, ¥ = (y, 1,..., 1). Hence x ~ y.

To prove the second claim, suppose X = (x; ,..., ¥,) € 2,(x). Then X = (%, ,..., %, , 1) €
Qpa(®). I »C,, ¥ and ~ is 1-pure, there exists ¥ = (¥, ,.., Y0 » 1) € 2,12(¥) such
that £ ~ ¥. Then Y = (y; ..., ¥») € @u(¥) and X ~ Y. Therefore x C, y.

(c) We will first show that x C, vy implies ax C, ay for all a € 4. By induction
on the length of z, it follows that x C,, y implies 2,x C,, 2; 7. The claim for z, follows
by left-right symmetry.



40 BRZOZOWSKI AND KNAST

Let U = (4 ,..., u,) € 2,(ax). Let u; be the first component such that | %, | > 0.
Such a #; always exists since | ax | > 0. The form of u, must be u; = au for some
ue A*. Thus U = (1,..., 1, au, u;q yooy #,). Let X = (1,0, 1, , 444 ..., %,); clearly
X e 2,(x). By the hypothesis xC, ¥ and l-purity of ~, there exists ¥ = (l,..., 1,
U, Uypq ooy Up) € 82,(¥) such that X ~ Y. Note that # ~ 9, and au ~ av because ~ is
a congruence. Let V = (1,..., 1, av, 3,4 ,..., 0,)- Then U ~ V and V € 2,(ay). Therefore
axC,ay. |

ProposITION 2. For alln =1 and x, y € A¥,
(a) If ~ is of finite index then so is ~,, .
(b) If ~ is 1-pure then so is ~, and
X~y implies x ~

(c) If ~ is a 1-pure congruence then 5o is ~,, .
Proof. (a) If ~ is of index i, then there are £ n-decomposition classes. There are
therefore <2¢" sets of the form ,(x).

(b) The fact that ~, is 1-pure is obvious, and the second claim follows directly
from Proposition 1(b).

(c) This follows directly from Proposition 1(c). [

2. DeEcomMposiTIONS AND CONCATENATION

From now on we assume that ~ is a 1-pure equivalence relation of finite index on A*.
Define
#Y = {L C A*|L is a union of equivalence classes of ~7}.

Clearly #® is a finite Boolean algebra with the equivalence classes [x] as atoms. In
this section we characterize Z©MB with the aid of ~,, .
Denote by [x], the equivalence class of ~, containing x. For X e 2,(x) let

T X] =[] - [%]-

Here, each [x;] is viewed as a language and the multiplication is just concatenation
of languages. Clearly

o[ X] = {x € 4% [X] € o(a)-
Define the languages Y(x) and N(x) (for yes and no):
Yix)= () m[X] and N = () =[X]

[X]efi,(2) [X]esd (x)

ProrosiTION 3. [x], = Y(*) N N(x).
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Proof. 1f zelx], then £,(2) = @,(¥). Thus [X]eQ.(x) implies [X]e D,(2)
and zem,[X]. Therefore ze Y(x). Similarly if [X]¢D,(x) then z¢m,[X] and
z e m,[X). Therefore z € N(x).

Conversely z € ¥Y(x) N N(x) implies z € [ X] iff [X]e Q,(x). Hence £,(z) = O,(x)
and zex],. |

Corresponding to each # define the family:
A, ={L C A* | L is a union of equivalence classes of ~}.
Again 4, is a finite Boolean algebra, ~,, being of finite index. Let

B — U %, .

n>1

ProprosiTiION 4. For alln > 1,
(@) BoC B,y
(b) B, = (#'")"B. Hence #° C %,, .
(c) B = BOMB, ie., Un>1 Bn = Unz1 (#9)"B) = (Unz1 (Z)")B.

Proof. (a) This follows directly from Proposition 2(b).

(b) Suppose Le4, . Since (#')B is a Boolean algebra, it suffices to show
that each [x], is in (Z®)*B. By Proposition 3, [x],, is a Boolean function of elements
m,[X] from (#®)*. Hence #,, C (#")"B.

Conversely it is enough to show that L € (#9)" implies L € 4,, , since 4,, is a Boolean
algebra. In fact, any L € (#”)* can be expressed as a finite union of languages of the
form [x,] - [x,] = ma[X], since concatenation distributes over union. Thus we need
to show only that 7,,[X] € &, for all X € Q,(x). We claim that

ma[X] = U [w]a, (1)

weJ

where [ = {z|[X] eﬂ,,(z)}. For suppose yem,[X]. Then y =y, - v,, ;€ [x],
i=1,..,n Let Y =(y,.,¥,); then [X] =[Y]. Thus yewn,[X] implies [X]e
B.(»), ie, ye J. But then y € Upes [@), -

On the other hand, suppose y e [w], for some we J. Now [w], = Y(w) N N(w)
and w,[X] appears in Y(w) since [X]e 3, (w). Thus ye[w], implies ye Y(w) and
y € m,[ X]. This completes the proof of the claim (1). By (1), =,,[X] € #,, and () C 2, .

(c) Le#V implies L e, for some n and by (b) £, = (#)"BC #UMB.

Thus BV C ZOMB. Conversely L € ZMMB implies L e (#9)B for some n and
(#9"B = %, . Thus L e #'OMB implies L € #, C #V. Hence ZOMB C #V. |

In summary, if a family £ of languages is defined by an equivalence relation ~,
then the family (#'®)"B is defined by ~,, .



42 BRZOZOWSKI AND KNAST
3, LaNnguaces oF Dor-DeprH 1

Let ~ be the largest 1-pure equivalence on A* for any A. Then there are only two
equivalence classes [1] = {1} and [a] = 4%, ac 4. Now let Z® be the family defined
by ~, ie.,

B0 — (4, (1}, 4%, 4%).

One verifies that the equivalence classes of ~,, are:

[l]n - 1)
[a]n = 4,

(@ = 4,

[an—l]n - A?Pl,
[a"], = A"A*.

Now it is easily seen that Y = FOMB = |}, (Z'")*B is closed under concatena-
tion. Thus #® = £, In the case of a one-letter alphabet 4 = {a}, this means that
o = BW, ie., a language over a one-letter alphabet is star-free iff it is of depth O or 1.
We now consider the case of two or more letters.
From now on ~ represents the following equivalence:

(a) fxelUudthenx~yiff x =y
(b) Ifx¢lUuAdthenx~yiff y¢luU 4.

This is the largest equivalence relation on A* that is pure for all ae 1 U A in the
sense that a ~ x implies @ = x for all ae 1 U A. If the cardinality of 4 is #4, the
index of ~ is #A4 + 2. One easily verifies that ~ is a congruence. We will call this
the 2-pure congruence meaning that x ~ y implies x = y for | x| < 2.

LemMma 1. Foralln = 1, ye 4%,

27~ v2n+l
Y~

Proof. We first show that £,(y*"1)C @,(y*). There is nothing to prove
if y = 1. Now suppose y = a, where ae 4. Let U = (u ,..., #,) € 2,(3»*™*1). There
must be at least one u; = 4% with s >> 3. Otherwise

|yt = @t =241 = Y | < 2,
i=1
a contradiction. Let %, = a1 Since |a* 1} > 2, a®* ~a*L. Let U' = (v ,..., u;_;,
u;/, Uy e, Uy). Then 7 (U') = a?* and U’ ~ U. Thus &*"+1 C,, a**.

Assume now that |y | > 2. First suppose that |, | > |y | for all &. Then all ; in U
must be of the form u; = y, y°y, where y, is a prefix of y, ¥, is a suffix of y, and s > 0.
If there exists a u; with s >> 2, then | y,¥%, | = 2 and | 3,5 Y, | = 2, i.e, 31 7% ~
11 ¥* Ly, . If there exists a u; with s = 1 and | y,9, | = 2 again y,¥%y, ~ ;3% y, .
Therefore, assume that for all «; either s =1 and | 3,9, | <1 or s = 0. In the first
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case |u; | = [ yyys| <|y|+ L. In the second case | y;¥,| < 2]y |. In both cases
lu; ] < 2{y| Hence |y | =(2n 4 1) |y | = e lu| <2n !9, a contradiction.
Finally, if there exists a u; with | u; | << |y |, then there also exists a &, with | s | > 2|y |.
This u;, must be of the form #, = y, y%y,, where either s > 1 ors = 1 and | 3,5, | >
|v| = 2, and we proceed as above. Therefore, one can always find U’ € 2,(y%**) such
that U’ ~ U. We have therefore shown that y2»+1 C  y2n,

The argument for y** C,, ™41 is essentially the same except we insert y instead of
removing it. For y = a, there must be a u; with |4, | > 2. Then #; = @, s > 2 and
a® ~ a**, For | y| = 2, there must exist u; == y, y*y, with | u; | > 2. Then y,y%, ~
Ny |

LEMMA 2. Let ~ be the 2-pure congruence on A*, let n > 1 and x,y € A*. Then
| x| > nimplies x (7; xXyx.

Proof. Let X = (% ,..., ¥,) € 2,(x). Let x; be such that | x; | > 2; such an x; always
exists since | x| =Yy, | %] > 7 Let ¥V = (% oo, %ig 5 %'y Xigg yeers x,) where x; =
x; 0 %, y% - x;. Then | x| =2, x; ~x and X ~ Y. Since 7,(Y) = xyx, we have
xC,ayx. |

LemMa 3. Let x,y,z€ A*, n > 1, and | x| > n. Then
( yxzx)?? ~ x(2xyx)Pn.

Proof. Let u = x(yxzx)?". By Lemma 1,
U~ u = x(yxzx)?t = xyxaw( yrezxe)*1 yxzx,

Let w == zx( yxzx)*1y. Then u ~,, (xyx)w(xzx). Let v = »(axyx)2" = xzx(yxzx)2*lyy =
xwx. By Lemma 2, x C,, xyx and x C,, xzx. By transitivity of C,,, v = xwx C,, xyxwx C,
xyxwxzx = w ~, u. Thus vC,u and, by symmetry, u C, v. Therefore u ~, v. §

We now give an example of a language that is not in &V, Let A, = (4, Q, ¢, ,F, 7>
be the finite automaton of Fig. 1, where 4 = {a, b} is the alphabet, QO = {0, 1, 2, 3}

>

Frc. 1. Automaton
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is the set of states, g, = 1 is the initial state, F = {3} is the set of final states, and =
is the transition function given by Fig. 1. One verifies that A, is reduced. Let L, be
the language recognized by A, , L, = (ab)* aad*.

ProrosITION 5. Ly,e B — BV ie., L, is a depth-2 language.

Proof. Suppose L, € V. Then L, is a union of congruence classes of ~, for some
n > 1. Let x = (ab)*, y = a and & = b. One easily verifies that

w(yxzxprel, and  x(zxyx)*¢L,.

But by Lemma 3, x(yxzx)®™ ~, x(2xyx)?", and these two words are in the same con-
gruence class. This is a contradiction. Hence L, ¢ #V.

In automaton A,, let Z, = {we A% | 7(1, w) = i}, and let D; = (ab)*. Then, from
Fig. 1,

Z, = DbA*,
Zl = Dl )
Z2 - Dla’

Ly, = Z; = (Dya) ad*,

and D, = bA* U A*bbA* U A*a U A*aaA*, showing that D, € BV, since 4* = ¢
is in #0.
It now follows that L, = D;a?A* is in #?. Altogether L, is a language of depth 2. |}

4. ON SyNTACTIC SEMIGROUPS OF DEPTH-ONE LANGUAGES

Let L C A+ be a language. The syntactic congruence of L is defined as follows. For
x, y € A%,
x=y iff for all u, v € A*, uxvel < uyvel.

Let S; = At/=, be the quotient semigroup of 4* modulo the congruence =, ; S, is
called the syntactic semigroup of L [4]. Let u: A+ -— .S, be the natural morphism
associating with each x € 4%, the equivalence class of =, containing x. We will denote
by x the image of x under p (i.e., u(x) = x).

We will say that a semigroup S is aperiodic iff there exists m > 1 such that f™ = fm+l
for all fe S. We say that S is 1-mutative iff there exists m > 1 such that

(fo = (g )™,

for all f, g € S. The two conditions are equivalent to S being #-trivial if .S is finite [6].
The reasons for our choice of terminology will become clearer in the induction step.
The following gives a necessary condition for membership in &%),

ProrosITION 6. Let L C A+t and let S; be the syntactic semigroup of L.

(a) If LB then for eachidempotent e € S; , eS;e is finite, aperiodic, and 1 -mutative.
(b) Suppose Sy is a monoid. Then L € BV implies that S;, is finite, aperiodic, and
1-mutative.
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Proof. (a)If L € ", then L is a union of congruence classes of ~, for some n > 1.
Since ~,, is of finite index, S; is finite. Since .S, is the image of A+ under u, there exists
y € A* such that y = f for each fe S; . By Lemma 1

y2n ,.: y2n+1_ (2)

Since L is a union of congruence classes of ~,, it follows that x ~, &' implies x = &’
for all x, x" € A*. Therefore by (2)

fon = fem, 3)

(The reader should note that we have just shown that if L is in #™ then its syntactic
semigroup S, satisfies (3) for all fe S, , i.e., is group-free [4].)

Now lete, f, g€ S; , let e be an idempotent, and let %, x, ¥, 2 € A4+ be such that u = e,
y =f, 2 =g, and ¥ = "1, By Lemma 3,

x{ yxzx)2n ~ x(zxyx)?n, )
and
o fegef'" = e(gefe)™™. &)

From (3) and (5) it follows that eS;e satisfies the required conditions with m = 2a,
since

((efe)(ege))™ = el fege)™ = e(gefe)™ = ((ege)(efe))™ (6)

(b) Let 1 be the identity of S, . Since (6) holds for all idempotents, it holds for
e =1 and we have (fg)™ == (gf ). This and (3) show that S} is I-mutative and aperiodic.

These results were obtained first by Simon [6] by different means. He also showed
the converse of (b), i.e.:

(b’) Suppose S, is a monoid. If S, is finite, aperiodic, and 1-mutative then L € V.

This concludes the basis.

II. INDUCTION STEP: £ > 1
1+. DECOMPOSITIONS AND GENERALIZED EQUIVALENCE RELATIONS

We now assume that Section 1 corresponds to 2 = 1, and we generalize all the notions
by induction on k. The induction hypothesis is that everything has been done for %,
and we consider k -+ 1.

DrrinITION 1+, For each 2 > 1, n >> 1 let ~F be an equivalence relation on A4*.
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We define a relation ~*t1 on (4*)" derived from ~% as follows. If X = (x, ,..., %,))
and Y = (¥, ,..., ¥,) then

E—0: X~V iff X~ Yasin Definition I,
k>0 X’EY iff xi%yiforizl,...,n.

Let the equivalence class of ~% containing x € 4* be [#]*. Similarly let the class

of ~* containing X = (¥, ,..., x,) € (A*)"* be [X]*. Clearly [X]** can be identified
with ([x;]% ,..., [x,]¥). Let
Q@) = {[XT*| X e Qux),

for all x e A*.

DrrINITION 2+. Let ~ be any equivalence relation on 4%, n, k > 1 and x, y e A*.

(a) Define a binary refation C¥ on A4*:
1
k=1 (1; = (nf of Definition 2,
k ~ ~
B>1: xCy iff £2,5(x) C 2,5 ).

(b) Define the equivalence relation ~% on 4*:

k=1: ~ = ~ of Definition 2,
n n
3 . k k
k> 1: X~y iff x%‘yandy%x.
To illustrate this inductive procedure, we have the following order in which the
concepts appear:
(1) x~7%y is defined in the basis.
() X~2Yiff x; ~,y; for all { = 1,..., n (Definition 1+).
(3) This yields [X]2 and £,%(x).
4) *Chyiff Q2 (x)C D2 ()
(5) x~2yiffxCZyand yCix.
Thus we have gone through the full cycle.

PropPOSITION 1*. Letn,k = 1 and x,y, 2, , 2, € A*.
(@) CEk is reflexive and transitive.
(b) If ~ is 1-pure then

k41 k k k
x C yimplies x ~ y and «x n(;rl y implies x Cy.
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(c) If ~ is a 1-pure congruence, then
k . . k
x C y implies zyx3, C 2, y2, .
n- n
Proof. (a) Trivial.

(b) % = 1: Proposition 1(b).

k> 1: Clearly X = (x, ..., 1) € 2,(x). If x Ci*! y there exists Y = (y ,..., ¥u) €
2,() such that X ~*1 Y, Since ~} is 1-pure by the inductive assumption (Proposi-
tion 2%), Y is of the form ¥ = (», 1,..., 1) and & ~% y.

For the second claim, suppose X = (%; ,..., ) € 24(x). Then X = (%, i, %, , 1) €
Q,1(*). If xCk ;v and ~ is 1-pure there exists ¥ = (Y1 ¥n, 1) such that X ~* ¥
and ¥ € 2,,:(»). Then ¥ = (9, ,..rr ¥0) € 2n(¥) and X ~* Y. Therefore x C y.

(c) Same argument as in Proposition 1(c). |

ProPOSITION 2t. Foralin, k = 1 and x,y € A*:

(8) If ~ is of finite index then so is ~% .

(b) If ~ is 1-pure, then so is ~;, and
k moli k
x ~ y implies x ~ y.

k

(¢) If ~ is a 1-pure congruence then so is ~,, .

Proof. Same as Proposition 2 after ~,, is replaced by ~% . |

2+, DECOMPOSITIONS AND REPEATED CONCATENATION

Again ~ is assumed to be a 1-pure equivalence relation of finite index. Denote by
[¥]® the class of ~F containing x, and for X € 2,(x) let

m [ X = ] - [l -
We have
ml XT7 = (e A% [ [X]* e 35 ().

Define also

Y¥x) = () m[XFF and N = () mIXJ

[X1¥e®, ¥ (x) (XTe2," @)
ProposITION 3*. [#]F = Y¥(x) N N¥(x).

Proof. Repeat the proof of Proposition 3 with ~¥ instead of ~, . |

571/16/1-4
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Corresponding to each ~F define:
. . . 3
B% — (L C A* | L is a union of equivalence classes of ~J.
n
Again # is a finite Boolean algebra. Let
g(k) _ U gs'k)’
n3l

ProrosrtioN 4+, For all n, k > 1,

(a) BHCBY,,

(b) BEHY — (BFNnB, hence B C BED,

(c) AU+ — (B%) MB = BO(MB)-+,
Proof. Repeat the proof of Proposition 4 with ~% instead of ~, . [
It follows that the family of aperiodic languages is

o = | B0,

k>0

3+. LaNGUAGES oF Dot-DEepTH £k
Again, let ~ be the 2-pure congruence.

LemMa 1+. For all n,k > 1, y € A*, there exists m > 1 such that y™ ~% ym+1,
Proof. Let m, = 203" 3n) for k > 1. We claim that yms ~% ymstl,

k =1: We have m; = 2n and the result holds by Lemma 1.

k > 1: Assume the result holds for %, and that | y | > 1.

Let U = (u;,..., u,) € 2,(y™+1+1), Then there exists at least one #; such that

. Mesy B k i B k-1 ;
) > 2y =2( Y #) 1y | = (20( T ) +2) 151
i=0 =0
= (me +2) 17 -

Now #; must be of the form u; = y,y%, where |1,7,| << 2|y |. Hence s > m, and
by the induction hypothesis y* ~% y*=1. Let U’ = (uy ,.e #y_y » %, gy oeeey Uy) Where
u; =yy*Y,. Then u;~Eu/ and U~*1U". Since =, (U’) =y™+, we have
ymk+1+1 Cﬁ"‘l Y,

To prove y™+1 CEH ymesatl yse a similar argument, replacing y* by y*+! instead

of y*-1. |}
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Lemma 2+, Letk = 0,n =1, x,ye A%, | x| > n. Define

uo = X
and

Uy, = Uy_y(YUly_y3U )", for k>0,

where my, is defined in Lemma 1+. Then
k+1 k41
i’ (7; 2, YUy, and  u, (7: T 7T

Proof. k = 0: This reduces to Lemma 2.

k> 0: Letw = yu_,2u,_, . We must show

k4l
Uy, = @ Cw u™ Py w™ ()

Because of Proposition 17(c) it is enough to show that
m; kil m, I,
k+1 k+1 (20 G—
w (7; W Flyy, o = 9. (8)

Let W = (w, ,..., w,) € 2,(w™+). There must exist w; such that | w; | > (my,,/n) | w| =
(m; + 2) | w|. Also w; must be of the form w'w*w”, where w’ is a suffix and »” is a
prefix of w. It follows that s > m, . Hence

k k
w* ~ W™~ W™ — g™y, au, W™ = p.

Now we have the inductive assumption:

3 x
Uy 3y % Up_y Yip— and Uy y g Uy 13Uy -

Therefore
k
g = w"yu_yu™ g Wy (1,2t )0 = .
On the other hand,

M+ my

k
1 m; Mm;
g W Y w =W Yty SUty_y) yihy_yto"

and
m; m,
P = w3ty w0 C w2y Yoy Ju™ ~9q
Thus p ~% ¢, showing that
k
W'~ W™y, o™ = q.

By Lemma 17,

k
w?* ,:, wmk+lyuk—1wmk+l'
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Now let =, = e'wm™+yy, o™aw”, and let W' = (@ ,.., @iy, 0, Wy 5 W)
Then w(W’) is of the form wrawm™eiyu, w™+w® which is ~%' equivalent to
wmeay,_wmt = v, Now W' ~*+1 W; ie., we have shown that @™+ Cit' 0. This is
(8), and (7) follows.

To prove u, C¥** u,zu; use a very similar argument, except that we show that

k
™ ~ g™y ™t = o,
n

This holds since
My ko om m, k My, my k
W~ WYy Uy W g W™y 22Uy )" ~ O,
n -n
and
k my, mké my. My k my.
v~w Yitg_1%(Uge—1) g1 W - W Vb 12Uy Y1) Uy 1 ~wen |
LemMma 3+, Letn, k=1, (x| > n, and x,y, 2€ A*. Let uy = x and for k > 1, let
s ' Vs 0 )
wy, = (Yt 13Uz _3)" and U = Up_y(3Up_y Y y)™
Then m can be chosen in such a way that u, ~% v, .

Proof. k = 1: This is Lemma 3.

k> 1: Let m = my,, ; then Lemmas 1+ and 2+ hold for ~%*! and Ck™, respec-
tively. By Lemma 1w,y ~ot g yupzu)™t = wyupzu( yuzuw )"~ yupzu,, . Let
w, = 2w ywpzu)™ 1y, Then w,, ~it (uyu) wluzu). Also, vy = wwm, . By
Lemma 2+, u;, C¥*Y u, yu,, and w;, CE* w2, . Hence up Cit! vy, . Similarly, v, CiH
Uy, and the result follows. [ ' ' '

We now give an example for each & >> 1 of a language that is not in #®. Let Ay, =
(A,Q,q,F, 1), where A =1{a,b}, Q ={0,1,..,k+2}, ¢y =1 F=1{k+2} and
fori=1,., k41

(i, a) =i+ 1, (i, b) =i —1,
7(0, @) = (0, b) =0,
k+2,8) =7k +2,b) =k + 2.

This is shown in Fig. 1+. One verifies that A,,, is reduced.

Fic. 1*. Automaton A, .
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Before proceeding we will prove the following property of A, . Let
uy = (ab)",
and forj > 1 let
u; = Uy y(au;_ybu; )" and vy = u; 4(bu; yau; )",
be defined as in Lemma 3+, with x = (ab)", y = @ and # = b. Then

(i u)) = i for 1<i<h—j

9
Tt u) =k +2 for k—j+1<<i<k+1. ©)

We verify this claim by induction on j.

j = 0: This is easily verified for u, = (ab)*.

j > 0: Assume that (9) holds for »; . Denote by x the transformation on the set O
of states of A, caused by x. The transformation #; is as shown in the first row of Fig. 2+
by the inductive assumption. From Fig. 1* it is easily verified that w,a, wjau; , and u;au;b
are as shown in Fig. 2+, and that o

w;aubu; = w,aub (10)
and

ujaujbuja = u;au; .

Thus
wiaubuza(ubu;) = wauubu; .

Noting that #u; = u;, we have

u;(aubu;)? = ugaubu;).

Hence
.y = us{aubu)™ = uyaubu;).

From (10) and Fig. 2+, we have the claim (9) for %, .

! 2 cee kej=l k-j k-j#l - . k k+t
uj 1 2 cee Ik=j-If k-] (k42 | - k+2 | k+2
yja | 2 3 cee [ k-j |k ke2 | oo k+2 | k+2

You) 2 3 cee I k=j (k42 |K¥2 ] .- k+2 | k+2
w i 2 e |k-j-l k42 | k+2 k+2 | k+2

F16. 2+. Transformations in Az, .
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ProrosiTION 5+, L., € BN — B e, L, is a depth-(k + 1) language.

Proof. First we show that L, ., ¢ Z%). By (9) 7(1, #;_;) = 1 and {2, u,_,) =k + 2.
Thus
(1, ug) = (1, uy_y(auy_buy_1)") =k + 2,
and
7(1, vy) = 0.

Therefore u, €L, but v, ¢ L;,, . By Lemma 3+ u, ~% v, . Hence L,,, cannot be a
union of congruence classes of ~%, and L, ¢ #*,

Next we will show that the language L, ., recognized by A,,; is in Z%*+D. We will
show in Lemma 4+ that a related language, D, , is in Z®. Let

D, =1,
Dy = (aDyyb)*, for k> 1.

One easily verifies that D, = {we A* | (1, w) = 1} in A;,, . Note also that
D, ,CD, forallk > 1.
Let Z; = {we A* | 7(1, w) = i}. Then:

Zy = DybA*,
Zy = Dy,
Ziy = ZaDy_; for 1 <i<k,
and
Lyyy = Zpyp = Zyyyad* = (DyaDyyaDy_sa -+ DsaD,a) aA*, (11)
for we have

Zyy = Zya = Zyal = ZyaD,,
Zy = Zy_ja(ab)* = ZkL—IaDl y

etc. The claim that L,,, € #%+V now follows from (11) if we assume Lemma 4+, ||

Levma 4+, For k > 1 let
E, = D;_,bA* U A*KbD,_,)"1 bA* U A*aD,_, U A*a(D,_,a)*' ad*.
Then E, = Dy, showing explicitly that D, € .
Proof. We verify:

(a) xeD;,b4* implies 7(1, x) = 0.

(b) xe A*b implies 7(1, x) % k + 1. Hence y € (Dy_;b)*1 bA* implies (1, xy) €
{0, 2+ 2}.

(c) xeA*aD,_, implies (1, x) 5= 1.

(d) xe A*a(D,_ja)* ! aA* implies (1, x) {0, & + 2}.

Therefore, we have shown that x € E; implies xe D, .
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Conversely, if xe D, and (1, x) €{2,..., k + 1}, then x€ A*aD, ;. Thus x€ E,.
Next suppose 7(1, ¥) = 0 and x = xx, implies 7(1, x;) % & + 1. Then x€ D,_,bA4*.
Now suppose (1, x) = 0 and x “goes through’ k4 1. Let x, be the longest prefix
of x such that 7(1, x,) = & + 1. Then «x is of the form x = x,bx, where (1, x,0) = k.
Now x,b € A*b and

%, € bDbD, - D, _bA* C (bD,_ k-1 bA*.
Thus x,bx, € A*b(bD;_,)* 1 bA* and x € E,,. Similarly we verify that (1, x) =k + 2
implies
x € A*a(D,_ a)1 aA*.
For let x, be the longest prefix of x such that #(1, x;) = 1. Then x is of the form
x = x,a%, , where
%y € (Dy1aDy_sa +-+ Dya) adA* C (D,_ a7t a4*.
Hence the claim holds and in all cases ¥ € D, implies x € E, . Therefore D, C E;, and
the lemma follows. ||

This concludes the induction step and we can now state our main result:

THEOREM. The dot-depth hierarchy of star-free languages is infinite.

Proof. For each & == 1 we have exhibited a language L, that is in B+ — Z® |

4+, ON SYNTACTIC SEMIGROUPS OF DEPTH-R LANGUAGES

We now generalize the notion of 1-mutativity. Let S be any semigroup and & > 1
an integer. S is k-mutative iff there exists m >> 1 such that for each f,ge S

hea(fhraghe )™ = by s(ghia fliy)™
where
b = (fo"
and

by = by o(fhiaghp )™ for k> 1.

The following is a necessary condition for membership in Z®:

ProrosiTION 6. Let L C At and let S; be the syntactic semigroup of L.
(a) If LeB%® then for each idempotent ec Sy, eS;e is finite, aperiodic, and
k-mutative.
(b) Suppose S, is a monoid. Then L B'® implies Sy is finite, aperiodic, and
k-mutative,
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Proof. (a) Suppose L € %*. Then L is a union of congruence classes of ~¥ for some
n > 1. Since ~¥ is of finite index, S; is finite.
Let fe Sp, and let y € A* be such that y = f. By Lemma 1+

k
ymk ~ ymk+l'

n

Since L is a union of congruence classes of ~/ it follows that

fm" =fmk+1- (12)

Hence S, is group free.
Now let e, £, and g € S, be such that e is an idempotent and let ¥, x, y, € A* be such
thatu = e,y = f, 2 = g, and x = »"*1. By Lemma 3+

k
Y (7 TP T ~ Uy (BU3—y Yl 3)™.
Thus

(g8 )™ = (g i )™
Now one easily verifies by induction on % that u, = ewe for all k > 0. Thus
uy, = ty_y((efe) ue_y(ege) )™

Now let
hy = uy = el(efe) elegele)™ — ((efe)ege)™,

and

Then u), = v, implies

hi_1((efe) hus(egeler)™ = hy_s((ege) hy_s(efe)po)™. (13)
Now (a) follows from (12) and (13).
(b) Let 1 be the identity of S, ; then (12) and (13) hold with e == 1. ||

Observe that the notion of A-mutativity defines an infinite hierarchy of finite semi-
groups. This follows from the example in Fig. 1+, since the syntactic semigroup of
A, is (& 4+ 1)-mutative, but not k-mutative.
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