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Let A be a finite alphabet and A* the free monoid generated by A. A language is any 
subset of A*. Assume that all the languages of the form {a}, where a is either the empty 
word or a letter in A, are given. Close this basic family of languages under Boolean opera- 
tions; let So) be the resulting Boolean algebra of languages. Next, close #a) under 
concatenation and then close the resulting family under Boolean operations. Call this new 
Boolean algebra a(i), etc. The sequence @aI, Hi),..., @*I,... of Boolean algebras is called 
the dot-depth hierarchy. The union of all these Boolean algebras is the family S# of 
star-free or aperiodic languages which is the same as the family of noncounting regular 
languages. Over an alphabet of one letter the hierarchy is finite; in fact, #sb = Sr’. We 
show in this paper that the hierarchy is infinite for any alphabet with two or more letters. 

Let A be a finite, nonempty alphabet and A* the free monoid generated by A, with 
identity 1 (the empty word). Elements of A* are called words. The length of a word 
x E A* is denoted by 1 x j. Note that 1 1 / = 0. The concatenation of two words x, y E A* 
is denoted by xy. 

Any subset of A* is called a language. If L, and L, are languages then & = A* - L1 
is the complement of L, with respect to A *, L, u L, is the union, and L, IT L, is the 
intersection of L, and L, . Also LILz = {w E A* 1 w = x1x2, x, ~4, x2 eL2} is the 
concatenation or product of L, and L, . 

For any family ,9 of languages let %M be the smallest family of languages containing 
9 u ((1)) and closed under concatenation. Similarly let FB be the smallest family 
containing 9 and closed under finite union and complementation. Thus 9M and 9B 
are the monoid and Boolean algebra, respectively, generated by 9. 

* This work was supported in part by the National Research Council of Canada under Grant 
A-1617. 
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Let 9 = ({u} ( a E A); this is the finite family of languages whose elements are 
languages consisting of one word of length 1. We will write 9’ u 1 for 9 u {{I}). We 
use 9 u 1 as the basic family of languages over the alphabet A. Now define the following 
sequence g(O), 9(l),..., P),... of Boolean algebras: 

9w = (1 u Z)& 
g(k) = (@-) MB = g(O)(MB)“, for k>l. 

This sequence (g(O), go),..., &P),...) is called the dot-depth hierarchy. A language L 
is of (dot) depth 0 iff L E 99(s), and of depth k, K > 1, iff L E &7(k) - gck--l). Thus k is the 
minimum number of concatenation levels necessary to define L. 

Let & = lJkao9P); clearly &’ is the smallest family containing 9’ U 1 and closed 
under Boolean operations and concatenation. This family is known as the aperiodic 
or star-free family [4, 51, and is identical to the family of noncounting regular languages 
[2, 43. It was shown by Schiitzenberger [5] that 9 CA* is star-free iff its syntactic 
monoid is finite and group-free, i.e., contains only one-element subgroups. 

For languages over a one-letter alphabet one easily verifies that the dot-depth hierarchy 
is finite [l]. In fact, for A = {a}, 

where 9, = {{u}], &a is the family of aperiodic languages over a one-letter alphabet 
and @,,’ is the corresponding family of depth-one languages. 

It was conjectured in [3] that the dot-depth hierarchy is infinite if the alphabet has 
two or more letters, i.e., that for each K 2 0 there exists a language that is of depth 
R + 1 but not of depth k. We prove this conjecture in this paper. 

This paper is written by induction on k. In Sections l-4 we treat the case k = 1 
which provides the basis. The induction step consists of Sections 1+-4+. 

I. BASIS: k = 1 

1. DECOMPOSITIONS AND EQUIVALENCE RELATIONS 

Let (A*)” be the Cartesian product of n copies of A*, for n > 1. Let bum: (A*)” -+ A* 
be defined as follows. For X = (xl ,.,., x,) E (A*)“, nn(X) = x1 ... x, . An n-&corn- 
position is any element X of (A*)%. W e say that X is an n-decomposition of x E A* 
iff n,(X) = x. Let G$(x) be the set of all n-decompositions of x. Clearly rR,(x) is a finite 
set. For example, let A = (a, b} and x = uba. Then x has the following 2-decompositions: 

DEFINITION 1. Let N be any equivalence relation on A*. We define an equivalence 
relation N on (A*)” derived from N on A* as follows. If X = (xi ,..., x,) and Y = 
(Yl s*-., YJ then 

X-Y iff xi wyi for i = I,..., 71. 
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Let the equivalence class of - containing x E A* be [xl. Similarly, let the class of - 
containing XE (A*)n be [Xl. Clearly [X] = [(x1 ,..., x,)] can be identified with 
([4,.-, [d). Let 

ad4 = w7 I x E Q&N 

for all x E A*. Thus ai, is “the set of all n-decompositions of x that are distinct 
with respect to the relation N.” For example, consider the equivalence defined by: 

x-1 iff x=1, 

andforx # 1, 
““Y iff y#l. 

Under this equivalence J&(&z) = {([l], [a]), ([a], [a]), ([a], [I])}. 

DEFINITION 2. Let N be any equivalence relation on A*, n > 1 and x, y E A*. 

(a) Define the binary relation C, on A*: 

X$Y iff fin(x) C a,(y). 

(b) Define the equivalence relation wn on A*: 

XN ny iff x$y and y$x. 

We will say that an equivalence relation - on A* is 1 -pure iff x - 1 implies x = 1 
for all 3c E A*. 

PROPOSITION 1. Foralln 3 1 undx,y,z,,z,EA*, 

(a) C, is reflexive and transitive. 

(b) If - is 1 -pure then 

x$yimpliesx~y and x Cl y implies x $ y. 

(c) If - is a l-pure congruence, then 

x C/ y implies zlxzz 5 z1 yxz . 

Proof. (a) Obvious. 

(b) Clearly X = (x, I,..., 1) E!&(X). If XC, y there exists YEQ,(~), Y = 
(y1 ,--*7 y,J such that X - Y. Since N is l-pure, Y = (y, I,..., 1). Hence x N y. 

To prove the second claim, suppose X = (x1 ,..., x,) E Q,(x). Then X = (x1 ,..., x, , 1) E 
Q,+,(x). If x C,,, y and - is l-pure, there exists Y = (yl ,..., yn , 1) E Qn,,(y) such 
that X - Y. Then Y = (yi ,..., y,J E J&(y) and X - Y. Therefore x C, y. 

(c) We will first show that x C, y implies ax C,, uy for all a E A. By induction 
on the length of zi it follows that x C, y implies zrx C, ziy. The claim for z2 follows 
by left-right symmetry. 
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Let U = (~1 ,..., u,) E Q,(W). Let ui be the first component such that 1 z+ j > 0. 
Such a U, always exists since 1 ax 1 > 0. The form of ui must be ui = au for some 
u E A*. Thus U = (I,..., 1, au, ui+i ,..., 24,). Let X = (l,..., 1, 24, ui+r ,..., 21,); clearly 
XE 52,(x). By the hypothesis x C,y and l-purity of -, there exists Y = (l,..., 1, 
f4 %+1 I***, w,J E 52,(y) such that X N Y. Note that u - ~1, and au - av because - is 
a congruence. Let V = (l,..., 1, aw, zli+i ,..., we). Then U - V and V E QJuy). Therefore 
uxc, uy. 1 

PROPOSITION 2. For all n > 1 and x, y E A*, 

(a) If - is of finite index then so is wn . 

(b) If N is l-pure then so is w,, and 

x ,--, y implies x ‘;: y. 

(c) If - is a l-pure congruence then so is wn . 

Proof. (a) If - is of index i, then there are in n-decomposition classes. There are 
therefore ,<2i” sets of the form o,(x). 

(b) The fact that wn is l-pure is obvious, and the second claim follows directly 
from Proposition l(b). 

(c) This follows directly from Proposition l(c). m 

2. DECOMPOSITIONS AND CONCATENATION 

From now on we assume that - is a l-pure equivalence relation of finite index on A*. 
Define 

9(O) = {L 2 A* / L is a union of equivalence classes of -}. 

Clearly A+(O) is a finite Boolean algebra with the equivalence classes [x] as atoms. In 
this section we characterize kWMB with the aid of -,, . 

Denote by [xl, the equivalence class of wn containing x. For X E Qn(x) let 

Here, each [xi] is viewed as a language and the multiplication is just concatenation 
of languages. Clearly 

v,[X] = {z E A* / [X] E&(Z)}. 

Define the languages Y(x) and N(x) (for yes and no): 

PROPOSITION 3. [xl, = Y(x) n N(x). 
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Proof. If ZE [xl, then J&(z) = a%(x). Thus [Xj E a,,(x) implies [X] E!&(Z) 
and z E 7~JX]. Therefore z E Y(x). Similarly if [X] $ o,(x) then z $ r,JXj and 
x E ‘R,[X]. Therefore x E N(x). 

Conversely z E Y(x) n N(x) implies z E ?r,JX] iff [X] E d,(x). Hence J?,(z) = a&) 
and z E [xl, . 1 

Corresponding to each n define the family: 

gn = {L C A* [L is a union of equivalence classes of ->. n 

Again .9% is a finite Boolean algebra, wn being of finite index. Let 

9’1 = u sn. 
n>l 

PROPOSITION 4. For all n 2 1, 

(4 a* C gn+l . 
(b) 99,, = (9(“))nE?. Hence .6@O’ C S?,, , 

(c) LB(l) = B(“)MB, i.e., us>1 an = (Jnpl ((Bco))nB) = (lJn>l (9(“))n)B. 

Proof. (a) This follows directly from Proposition 2(b). 

(b) Suppose L E a,, . Since (59O))nB is a Boolean algebra, it suffices to show 
that each [x], is in (~?8~))nB. By Proposition 3, [x], is a Boolean function of elements 
n,[X] from (@O))n. Hence 97% C (#“‘)nB. 

Conversely it is enough to show that L E (@“))n implies L E 3?- , since 9?n is a Boolean 
algebra. In fact, any L E (S?(O)) can be expressed as a finite union of languages of the 
form [xJ 1.. [x,J = x,,[XJ since concatenation distributes over union. Thus we need 
to show only that rr,[Xj E g+, for all X E Q,(x). We claim that 

~n[Xl = u M, , (1) ICCI 

where 1 = (a / [X] E&(Z)}. F or suppose y E r,[X]. Then y = yi ... y%, yi E [xi], 
i r= 1 ,..-, n. Let Y = (yr ,..., y,J; then [X] = [Y]. Thus y E rr,[X] implies [Xj E 
k(y), i-e., Y E .I. But then Y E LLJ bL . 

On the other hand, suppose y E [WI* f or some w E J. Now [wlr = Y(w) n N(w) 
and ~TJX] appears in Y(w) since [X] E Q,,(w). Thus y E [w], implies y E Y(w) and 
y E v,[X]. This completes the proof of the claim (1). By(l), rr,[XJ E g,, and (@))n c g,, . 

(c) L Esw implies L E 9?,, for some n and by (b) gn = (&9(“))nB C B(O)MB. 
Thus 99(l) 2 &J#s’MB. Conversely L E @(“)MB implies L E (9V))nB for some n and 
(@(s))nB = &8n . Thus L E @O)MB implies L E Bfi G g(l). Hence g(s)&% 2 @). l 

In summary, if a family @ to) of languages is defined by an equivalence relation -, 
then the family (gto))nB is defined by wn . 
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3. LANGUAGES OF DOT-DEPTH 1 

Let - be the largest l-pure equivalence on A * for any A. Then there are only two 
equivalence classes [I] = {I} and [a] = A+, a E A. Now let @to) be the family defined 
bY -, i.e., 

c@(O) = (41, {I}, A+, A*}. 

One verifies that the equivalence classes of wn are: 

[lln = 1, 
[al, = 4 

[a?]* = AZ, 

[a?~+l], _ A”-1 

[an], = AnA;. 

Now it is easily seen that 9 (r) = 9Y”)IMB = UnPl (#o))nB is closed under concatena- 
tion. Thus GP2) = 99(r). In the case of a one-letter alphabet A = {a}, this means that 
S! = LW, i.e., a language over a one-letter alphabet is star-free zy it is of depth 0 or 1. 

We now consider the case of two or more letters. 
From now on - represents the following equivalence: 

(a) IfxEluAthenx-yiffX=y. 

(b) Ifx#luAthenx-yiffy$l~A. 

This is the largest equivalence relation on A * that is pure for all a E 1 u A in the 
sense that a - x implies a = x for all a E 1 u A. If the cardinality of A is #A, the 
index of - is #A + 2. One easily verifies that - is a congruence. We will call this 
the 2-pure congruence meaning that x - y implies x = y for 1 x 1 < 2. 

LEMMA 1. Foralln > l,y~A*, 

Y 2n ‘;: Yzn+le 

Proof. We first show that J&(yzn+l) C fi,(y2*). There is nothing to prove 
if y = 1. Now suppose y = a, where a E A. Let U = (ur ,..., UJ E &(yzn+l). There 
must be at least one ui = as with s > 3. Otherwise 

1 Y2n+l 1 = 1 a2n+l 1 = 2n + 1 = 5 1 ui ] < 2n, 
i=l 

a contradiction. Let ui’ = as-l. Since / as-l j > 2, as N as-l. Let U’ = (uI ,..., zciel , 
%I, %+.I ,.“I u,). Then r*(U’) = azn and U’ - U. Thus azn+l C, azn. 

Assume now that 1 y 1 > 2. First suppose that 1 ui 1 >, I y 1 for all i. Then all ui in U 
must be of the form ui = y1y8y2 where ye is a prefix of y, yr is a suffix of y, and s > 0. 
If there exists a ui with s > 2, then 1 ylysyz I 3 2 and 1 y1ys-ly2 I > 2, i.e., y1y8ya - 
ylys-lys . If there exists a ui with s = 1 and I yly2 I > 2 again y1y8yy2 - y,~~-~ys . 
Therefore, assume that for all ui either s = 1 and 1 ylye 1 < 1 or s = 0. In the first 
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case 1 ui / = 1 yryys 1 < j y j + 1. In the second case 1 yiya 1 < 2 1 y I. In both cases 
Iui/ <21yl.HenceIyzn+’ 1 = (272 + 1) 1 y / = CL, ) ui 1 < 2n 1 y 1, a contradiction. 
Finally, if there exists a Uj with 1 z+ 1 < 1 y /, then there also exists a uk with 1 uk 1 > 2 I y 1. 
This uk must be of the form uk = y1ysy2, where either s > 1 or s = I and 1 ylyz / > 
( y / > 2, and we proceed as above. Therefore, one can always find U’ E K&(y2*) such 
that U’ - U. We have therefore shown that y2n+i C, y2n. 

The argument for y2” Cny2n+1 is essentially the same except we insert y instead of 
removing it. For y = a, there must be a ui with 1 ui I > 2. Then ui = us, s 3 2 and 
us - a”+r. For / y / 3 2, there must exist ui = y1ysy2 with I ui 1 > 2. Then y1ysy2 - 
YlYs+lY2. I 

LEMMA 2. Let - be the 2-pure congruence on A*, let n 3 1 and x, y E A*. Then 

I x 1 > n implies x C xyx. n 

Proof. Let X = (x1 ,..., x,) E J&(X). Let xi be such that 1 xi 1 > 2; such an xi always 
exists since 1 x I = C,“=, I xi I > n. Let Y = (xi ,..., xiwl , xi’, xi+r ,..., x,) where xi’ = 
xi . . x,yx, ..* xi . Then I xi’ I 3 2, Xi - xi’ and X - Y. Since V,(Y) = XYX, we have 
xc,xyx. 1 

LEMMA 3. Letx,y,zEA*,n>l,undIxI >n. Then 

x( yXXX)2n 7 x(zxyx)2”. 

Proof. Let u = dyxzx)““. By Lemma 1, 

u N u* 
n = x( yxzxp+1 = xyxzx( yxzx)2”-1 yxxx. 

Let w = zx( yxzx)““-‘y. Then u -% (xyx)w(xzx). Let v = x(xxyx)“” = xxx(yxzx)21z-1yx = 
xwx. By Lemma 2, x C, xyx and x C, xzx. By transitivity of C, , et = xwx C, xyxwx C, 
xyxwxzx = li Nn II. Thus e, C, u and, by symmetry, u C, w. Therefore u No ~1. 1 

We now give an example of a language that is not in .9&l). Let A, = (A, Q, q1 , F, T) 
be the finite automaton of Fig. 1, where A = {a, b} is the alphabet, Q = (0, 1,2, 3) 

0 0 
FIG. 1. Automaton Aa . 
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is the set of states, ql = 1 is the initial state, F = (3) is the set of final states, and r 
is the transition function given by Fig. 1. One verifies that A, is reduced. Let L, be 
the language recognized by A, , L, = (ab)* aaA*. 

PROPOSITION 5. L, E 3?@) - &k?(l), i.e., L, is a depth-2 language. 

Proof. Suppose L, E k&l). Then L, is a union of congruence cIasses of wn for some 
11 > 1. Let x = (ui~)“, y = a and z := b. One easily verifies that 

x( yxzxp EL, and x(zxyxy $ L, . 

But by Lemma 3, x(~xzx)~~ mI1 x(z~yx)~~, and these two words are in the same con- 
gruence class. This is a contradiction. Hence L, # 93(l). 

In automaton A,, let & = {w E A* j7(1, w) = i}, and let Dr = (ab)*. Then, from 
Fig. 1, 

2, = DlbA*, 
2, = D,, 
Z, = D,a, 

L, = Z, = (D,a) aA*, 

and nl = bA* u A*bbA* u A*a u A*aaA*, showing that Dl EW), since A* = C$ 
is in .5P”). 

It now follows that L, = Dla2A* is in g f2). Altogether L, is a language of depth 2. 1 

4. ON SYNTACTIC SEMIGROUPS OF DEPTH-ONE LANGUAGES 

Let L CA+ be a language. The syntactic congruence of L is defined as follows. For 
x, Y E A+, 

x=y 
L 

iff for all u, Z,E A*, UXVEL -+UYVEL. 

Let S, = A+/E~ be the quotient semigroup of A+ modulo the congruence fL. ; S, is 
called the syntactic semigroup of L [4]. Let p: A+ -+ S, be the natural morphism 
associating with each x E A+, the equivalence class of zt containing x. We will denote 
by E the image of x under t.~ (i.e., P(X) = x). 

We will say that a semigroup S is aperiodic iff there exists m > I such that f m = f *+I 
for all f E S. We say that S is l-mutative iff there exists m > 1 such that 

(fg)” = kf )“s 
for all f, g E S. The two conditions are equivalent to S being f-trivial if S is finite [6]. 
The reasons for our choice of terminology will become clearer in the induction step. 

The following gives a necessary condition for membership in 99(l). 

PROPOSITION 6. Let L 2 A+ and let S, be the syntactic sema&oup of L. 

(a) If L E W) then for each idempotent e E S, , eS,e is finite, aperiodic, and 1 -mutative. 

(b) Supsose S, is a monoid. Then L E B(l) implies that S, is jinite, aperiodic, and 
1 -mutative. 



DOT-DEPTH OF STAR-FREE LANGUAGES 45 

Proof. (a) If L E @ (l), then L is a union of congruence classes of wn for some n 2 1. 
Since ffn is of finite index, S, is finite. Since S, is the image of A+ under p, there exists 
y E A+ such that y = f for each f E S, . By Lemma 1 

Y 2n “;: y2’L+1- (2) 

Since L is a union of congruence classes of wn it follows that x -n x’ implies x = 8’ 
for all X, x’ E A+. Therefore by (2) 

f2n = f2n+l. (3) 

(The reader should note that we have just shown that if L is in 99(l) then its syntactic 
semigroup S, satisfies (3) for all f E S, , i.e., is group-free [4].) 

Now let e, f, g E S, , let e be an idempotent, and let u, x, y, z E A+ be such that g = e, 
y = f, z = g, and x = un+l. By Lemma 3, 

and 

x( yx.m)2~ “;: X(ZXyXyn, 

e( fege)2n = e(gefe)2n. 

(4) 

(5) 

From (3) and (5) it follows that eS,e satisfies the required conditions with m = h, 
since 

((efe)(ege)P = e(fegeP = e(gefe)m = ((ege)(efe)P. (6) 

(b) Let 1 be the identity of S, . Since (6) holds for all idempotents, it holds for 
e = 1 and we have (fg)” = (gfF. Th is and (3) show that S, is l-mutative and aperiodic. 

These results were obtained first by Simon [6] by different means. He also showed 
the converse of (b), i.e.: 

(b’) Suppose S, is a monoid. If S, is finite, aperiodic, and l-mutative thenL E .%V). 

This concludes the basis. 

II. INDUCTION STEP: k > 1 

l+. DECOMPOSITIONS AND GENERALIZED EQUIVALENCE RELATIONS 

We now assume that Section 1 corresponds to k = 1, and we generalize all the notions 
by induction on k. The induction hypothesis is that everything has been done for k, 
and we consider k + 1. 

DEFINITION l+. For each k 2 1, n 2 1 let -fE be an equivalence relation on A*. 
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We define a relation mk+l on (A*)” derived from -,” as follows. If X = (x1 ,..., x,) 
and Y = (yr ,...,y,J then 

k=O: XAY iff XN Y as in Definition 1, 

k>O: X”ZY iff xi ~yi for i = l,..., n. ?I 

Let the equivalence class of -i containing x E A* be [x1$ . Similarly let the class 
of I& containing X = (x1 ,..., x,J E (A*)11 be [Xlk. Clearly [Xlk+l can be identified 
with ([x1]: ,..., [x,J$). Let 

for all x E A*. 

a&“(4 = U-qk I x E Q&)>, 

DEFINITION 2f. Let N be any equivalence relation on A *, 12, k > 1 and x, y E A*. 

(a) Define a binary relation C: on A*: 

k = 1: i = 5 of Definition 2, 

k>l: .a+ iff OS,“(x) C O,l’(y). 

(b) Define the equivalence relation -,” on A*: 

k = 1: A = N of Definition 2, 
n n 

k>l: x+y iff xiyandyix. 

To illustrate this inductive procedure, we have the following order in which the 
concepts appear: 

(1) x -2y is defined in the basis. 

(2) X w’l Y iff xi -Ayi for all i = l,..., n (Definition 1’). 

(3) This yields [Xl2 and fia2(x). 

(4) x Cg y iff an2 (x) C fin2 ( y). 

(5) xwfyiff xCiyandyC:x. 

Thus we have gone through the full cycle. 

PROPOSITION 1 f. Let n, k 3 1 and x, y, z1 , x2 E A*. 

(a) CE is rejexive and transitive. 

(b) If - is l-pure then 

k+l 
x C yimpliesx+y and n x ? y implies x { y. 
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(c) If - is a l-pure congruence, then 

k k 
x : y implies x,Xx, 5 z1 yzZ . 

Proof. (a) Trivial. 

(b) k = 1: Proposition l(b). 

k > 1: ClearlyX = (x, l,..., 1) E Q,(x). If x Ck+‘y there exists Y = (yr ,..., y,J E 
s2,( y) such that X mk+l Y. Since wn k is l-pure by the inductive assumption (Proposi- 
tion 2+), Y is of the form Y = (y, l,..., 1) and x -E y. 

For the second claim, suppose X = (x1 ,..., x,) E L&(x). Then 8 = (x1 ,..., x, , 1) E 
Q%+,(x). If x Ck,, y and N is l-pure there exists P = (yr ,..., yn, 1) such that X wk P 
and Y E Q,+,(y). Then Y = (yi ,..., y,J E L&(y) and X wk Y. Therefore x CE y. 

(c) Same argument as in Proposition l(c). # 

PROPOSITION 2+. For all n, k >, 1 and x, y E A*: 

(a) If N is of finite index then so is -It . 

(b) If N is l-pure, then so is -I and 

x & y implies x + y. 

(c) If N is a l-pure congruence then so is -k . 

Proof. Same as Proposition 2 after wn is replaced by -E . 1 

2+. DECOMPOSITIONS AND REPEATED CONCATENATION 

Again - is assumed to be a l-pure equivalence relation of finite index. Denote by 
[x1$ the class of -E containing x, and for X E L&(x) let 

We have 

Tr,[X]“fl = [x1]; a.- [x,]E . 

7rn[x]“+’ = {zeA* I [xl k+l E Q;+l(z)>. 

Define also 

Y”(x) = n 4x1” and wtx) = n TPlk- 
txl~~s-&*b) [xl”Qflm~(z) 

PROPOSITION 3+. [xl; = Y”(x) n N”(x). 

Proof. Repeat the proof of Proposition 3 with -,” instead of x . 1 

.571116/1-4 
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Corresponding to each -i define: 

932’ = (L C A* 1 L is a union of equivalence classes of 4}. 

Again Wkk) is a finite Boolean algebra. Let 

$9(k) = u &IF’, 
+1 

PROPOSITION 4f. For aZZ n, k >/ 1, 

(a) 99hkJ _C SYj$ , 

(b) @.k+” = (9;k’)“B, hence ap) C BII”+“, 
(c) @k+l) zz (&&t(k)) jjJB = &W”(~B)“+l. 

Proof. Repeat the proof of Proposition 4 with -i instead of N,, . 1 

It follows that the family of aperiodic languages is 

3+. LANGUAGES OF DOT-DEPTH k 

Again, let N be the 2-pure congruence. 

LEMMA l+. For all n, k > 1, y E A*, there exists m > 1 such that y” Lz ym+l. 

Proof. Let mk = 2Q:L’, nt) for K 3 1. We claim that y”k -t ymr+l. 

k = 1: We have m, = 2n and the result holds by Lemma 1. 

k > 1: Assume the result holds for K, and that 1 y 1 3 1. 

Let U = (% ,..., u,) EQJy ~+l+l). Then there exists at least one II~ such that 

Now ui must be of the form ui = y1y8ya where 1 yrya 1 < 2 I y I. Hence s > mk and 
by the induction hypothesis y8 ~Ey~-l. Let u’ = (or ,..., ut-r , u;, ua+r ,..., u,) where 
ui = yry”-lya . Then ui -f ul and U wk+’ U’. Since x,,(U’) = ymk+i, we have 
yw+1+1 c;+1 yWC+1. 

To prove pk+l Ck+‘ynt+l+l, use a similar argument, replacing y” by y*+l instead 
of y#-1. 1 
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LEMMAZ+. Le2k~O,n31,x,yEA*,Ixl>n.Define 

and 

u() = x 

Uk = f&-1( yu&%Jk+‘, for k > 0, 

where m, is defined in Lemma I+. Then 

k+l k+l 

ilk c ukY”k Cd n uk 5 %=k * 

Proof. k = 0: This reduces to Lemma 2. 

k > 0: Let w = yuk-lzuk-l . We must show 
k+l 

t‘k = ,+&!"mk+l c i(k$"mk+l~k-lwmk+'. 
It 

Because of Proposition I+(c) it is enough to show that 

(7) 

ktl 
W~k+l c w-+l u 

n y k-lwmk+= = v. (8) 

Let W = (wl ,..., w,J E Qnn(wUmk+l). Th ere must exist Wi such that 1 Wi 1 2 (mk+&z) 1 w [ = 
(mk + 2) 1 w I. Also wi must be of the form w’w~w”, where w’ is a suffix and W” is a 
prefix of w. It follows that s 3 mk . Hence 

w* : wmk ; &-+’ = wm~yuk~l~uk-lw”‘k = p. 
?I ” 

Now we have the inductive assumption: 
k k 

uk-l $"k-lYuk-l and uk-1 c &$u,+-1 . n 

Therefore 

q = Wmy4k-lWm~ { wmk,+‘,~,~u,~,)wmk = p. 

On the other hand, 

and 

k 
4-w n 

mk+lyuk-lw*k z wmk(~,-,=+-,) yuk-lwUmk 

p = wmkyl(k-+‘k-lwmk { ~mkyu,-,~(u,-,~~,-,)wmk 

Thus p -; q, showing that 

wa L2 Wrnkyuk-lwrnk = q. 
n 

By Lemma l+, 
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Now let wi’ = w’w~~+~Yu~-~w~~+~w”, and let W’ = (wl ,..., wiel , wit, Wi+r ,.:., w,). 

Then r,,(W’) is of the form w’w~*+~~u~-~w~~+Iw~ which is wt+;+’ equivalent to 
w~k+ly~~-~w”~+l = v. Now W ok+1 W; i.e., we have shown that wmk+l CE+’ v. This is 
(8), and (7) follows. 

To prove uk Cz+’ ukzuk use a very similar argument, except that we show that 

k 
wrnk - w”“zu,~,w”” = v. 

n 

This holds since 
12 

Wrnk L w”” y~k-lxuk-Iw 
n 

and 

LEMMA 3+. Letn,k~l,(x(>n,andx,y,z~A*.Letu,=xandf~~k~l,let 

Uk = %-l(Yuk-l~k-l)m and Vk = uk&u,7--1 yz&-1)“. 

Then m can be chosen in such a way that ulC -i vk . 

Proof. k = 1: This is Lemma 3. 

k> 1: Letm =m,,; then Lemmas l+ and 2+ hold for wt++’ and Cz+‘, respec- 
tively. By Lemma 1+ uk+r ~t+l u,(yu~~,)~+r = u,yug~~,(y~~zu~)“-~ yukzuk . Let 
wk = .z~~(yu~~u~)~-~y. Then ulcfl -“,” (ukyuk) wk(u~uk). Also, vKfl = ukwkuk . By 
Lemma 2+, uk Ct+’ uk yule and uk Cknf’ ubsuk . Hence uk+r CEfl v~+~ . Similarly, vkfl Cz+l 
uk+r and the result follows. a 

We now give an example for each k 3 1 of a language that is not in gfk). Let Ak+r = 
(A, Q, qr, F, r), where A = {a, b}, Q = (0, l,..., k + 2}, q1 = 1, F = {k + 2) and 
for i = l,..., k + 1 

T(i,U) = i+ 1, +,b) =i- 1, 

~(0, a) = ~(0, b) = 0, 
~(k + 2,a) = ~(k + 2, b) = k + 2. 

This is shown in Fig. l+. One verifies that Ak+r is reduced. 

FIG. If. Automaton A,,, . 
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Before proceeding we will prove the following property of A,,, . Let 

ug = (ub)“, 

and for j >, 1 let 

uj = Uj&Uj-lbUj_,)” and Vj = Uj-l(bUj_lUffj-l)1)E, 

be defined as in Lemma 3+, with x = (ab)“, y = a and z = b. Then 

~(i, 14~) = i for 1 <i<K--j, 

T(i, uj) = k + 2 for k--j+1 <i<k+l. 

We verify this claim by induction on j. 

j = 0: This is easily verified for u, = (ab)“. 

(9) 

j > 0: Assume that (9) holds for Uj . Denote by x the transformation on the set Q 
of states of A,,, caused by x. The transformation g5 is as shown in the first row of Fig. 2f 
by the inductive assumption. From Fig. l+ it is easily verified that ~,a, ujuu, , and quujb -- -- 
are as shown in Fig. 2+, and that 

and 

Thus 

ujaujbuj = ujau,b 

ujaujbuja = u,au, . 

gjaujbuja(ujbu,) = ujaujujbuj . 

(10) 

Noting that ujuj = uj , we have - - 

uj(au,buj)’ = uj(aujbuj). 

Hence 

%+l = uj(au,buj)” = uj(aujbuj). - 

From (10) and Fig. 2+, we have the claim (9) for u~+~ . 

I 2 

I 2 

2 3 I- 2 3 

I 2 

. . . 

. . . 

k-j-l k-j k-j+1 . . . k k+l 

. . . k+2 k+2 

. . . k+2 k+2 

. . . k+2 k+2 

. . . k+2 k+2 

FIG. 2+. . Transformatlons m A,+, . 
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PROPOSITION 5+. L,,, E 9Ykf1) - GYk), i.e., L,,, is a depth-(k + 1) language. 

Proof. First we show that L,+l $ .GWk). By (9) ~(1, u,+r) = 1 and ~(2, q-r) = k + 2. 
Thus 

and 

Therefore uk EL,,, but ok $Lk+l . By Lemma 3+ uk -i ok . Hence L,,l cannot be a 
union of congruence classes of -t , and J&+, $ Sk). 

Next we will show that the language L*+, recognized by A,,, is in .9?(k+1). II’e will 
show in Lemma 4+ that a related language, & , is in atk). Let 

Do = 1, 
D, = (aD,-,b)*, for k > 1. 

One easily verifies that D, = {ru E A* 1 7(1, w) = 1) in Ak+, . Note also that 

DK--l c D, forallk 3 1. 

Let 2, = {w E A* IT(~, w) = i>. Then: 

z, = D,bA*, 

5 =Dk, 
z,+l = &U&-i for 1 <i < k, 

and 
L k+l - - zk,, = Z,+,aA* = (D,,+zDkqlaD~-,a .*a D+zD,a) aA*, (11) 

for we have 
Z k+l = zka = z$l = ZgD,, , 

z, = zk-&b)* = zke& , 

etc. The claim that L,,, E W+l) now follows from (11) if we assume Lemma 4+. 1 

LEMMA 4-t. For k > 1 let 

Ek = D,,bA* u A*b(bD,JJ+l bA* U A*aDksl U A*a(Dk-,a)X-l aA*. 

Then Ek = Dk , show&g explicitly that D, E i%ck). 

Proof. We verify: 

(a) x E D,,bA* implies ~(1, x) = 0. 
(b) x E A*b implies ~(1, x) # k + 1. Hence y E (D,-,b)kdf bA* implies ~(1, xy) E 

(0, k + 2). 
(c) x E A*aD,-, implies T( 1, x) # 1. 
(d) x E A*a(D,-la)*-l aA* implies ~(1, SE) E (0, k + 2). 

Therefore, we have shown that x E Ek implies x E & . 
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Conversely, if x E & and ~(1, X) E (2 ,..., k + I}, then x E A*aD,-, . Thus x E & . 
Next suppose ~(1, X) = 0 and x = xlxZ implies 41, x1) # k + 1. Then x E D&A*. 
Now suppose ~(1, X) = 0 and x “goes through” k + 1. Let xl be the longest pretix 
of x such that ~(1, x1) = k + 1. Then x is of the form x = X$X, where ~(1, x,6) = K. 
Now xlb E A*b and 

xg E bD,bD, ... bD,-,bA* C (bD,-$-I bA*. 

Thus xrbx, E A*b(bD&-’ bA* and x E I& . Similarly we verify that 41, x) = k + 2 
implies 

x E A*Q(D,-,u)~-’ aA*. 

For let x1 be the longest prefix of x such that 41, x1) = 1. Then x is of the form 
x = xlaxz , where 

x2 E (Dk-,aD,-,a a.* D,a) aA* C (D,-,u)~-~ aA*. 

Hence the claim holds and in all cases x E Bk implies x E i& . Therefore & C $ and 
the lemma follows. 1 

This concludes the induction step and we can now state our main result: 

THEOREM. The dot-depth hierarchy of star-free languages is infinite. 

Proof. For each k 3 1 we have exhibited a language L,,, that is in 9V+l) - ~8~). 1 

4+. ON SYNTACTIC SEMIGROUPS OF DEPTH-k LANGUAGES 

We now generalize the notion of I-mutativity. Let S be any semigroup and k > 1 

an integer. S is k-mutative iff there exists m >, 1 such that for each f, g E S 

h+--l(fbc-&dm = h&%-lfhd’ 

where 

4 = (fg)” 

and 

h, = hk--l(fk-18h-dm for k>l. 

The following is a necessary condition for membership in LP): 

F’ROPOSITION 64. Let L C A+ and let S, be the syntactic semigroup of L. 

(a) If L E GW then for each idempotent e E S, , eS,e is finite, aperiodic, and 
k-mutative. 

(b) Suppose S, is a monoid. Then L E 9Fk) implies S, is finite, aperiodic, and 
k-mutative. 
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Proof. (a) Suppose L E ak. Then L is a union of congruence classes of -t for some 
n > 1. Since wn k is of finite index, S, is finite. 

Let f E S, and let y E A+ be such that y = J By Lemma l+ 

Y mt ; ymkil. 

Since L is a union of congruence classes of -i it follows that 

f”” = f”k+? (12) 

Hence S, is group free. 
Now let e, f, and g E S, be such that e is an idempotent and let u, x, y, x E A+ be such 

that _u = e, 2 = f, z = g, and x = u”+l. By Lemma 3+ 

Thus 

Uk-I(Y”k-lXUk-l)mk +’ u,e&f++,yt&l)mk. 

Uk-l(fUk-lgUk-l)mk = Uk-l(~Uk-lfUk--l)mk* - -- - -- 

Now one easily verifies by induction on k that 8k = ese for all k > 0. Thus - 

uk = uk-l((efe) %=tege) uk-l)mka - - - 

Now let 

h 1 = u1 = e((efe) e(ege)e)“” = ((efe)(ege))mk, - 

and 
h, = uk for k>l. - 

Then 2 = vk implies - 

hk-,((efe) b-,(eP)hk-dmk = hk-l((ege) hk-&@hk-dmk. (13) 

Now (a) follows from (12) and (13). 

(b) Let 1 be the identity of S, ; then (12) and (13) hold with e = 1. B 

Observe that the notion of k-mutativity defines an infinite hierarchy of finite semi- 
groups. This follows from the example in Fig. If, since the syntactic semigroup of 
A k+l is (k + I)-mutative, but not k-mutative. 
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