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An event E is a subset of the free monoid A* generated by the finite alphabet A. 
E is noncounting if and only if there exists an integer k ~> 0, called the order of E, 
such that for any x, y, z E A*, xykz ~ E if and only if xyk+lz E E. From semigroup 
theory it follows that the number of noncounting events of order < 1 is finite. Each 
such event is regular and the finite automata accepting such events over a fixed alphabet 
are homomorphic images of a universal automaton. Star-free regular expressions 
for such events are easily obtainable. It is next shown that the number of distinct 
noncounting events of order >~2 over any alphabet with two or more letters is infinite. 
Furthermore, there exist noncounting events which are of any "arbitrary degree of 
complexity," e.g. not recursively enumerable. 

1. INTRODUCTION 

An event E, i.e., a subset of the free monoid A* generated by the finite alphabet A,  
is noncounting if and only if there exists an integer k ~> 0, called the order of the non- 
counting event, such that for arbitrary x, y, z ~ A*,  xyez ~ E if and only if xyk+az ~ E. 
Schutzenberger [8] and Papert and McNaughton [6] showed that an event that is 
regular (acceptable by a finite automaton) is noncounting if and only if there exists 
a star-free regular expression representing it. Cohen and Brzozowski [1] and Meyer [5] 
also proved this equivalence by invoking the Krohn-Rhodes decomposition theorem 
for finite automata. Using some results from semigroup theory, we show in Sections 
3 and 4 of this paper that there exist only a finite number of noncounting events of 
order ~< 1 and that they are all regular. Furthermore, we show that for each finite 
alphabet A there exists a universal finite automaton whose homomorphic images 
constitute precisely the set of all automata that accept noncounting events of order ~< 1 
over the alphabet A. We also prove directly that each such event can be represented 
by a star-free regular expression. In Section 5 we consider noncounting events of 
order >~2 and we show that for each order >~2 there exist an infinite number of 
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distinct regular noncounting events over an alphabet with two or more letters. In  fact, 

there exist noncounting events that are, in a sense, of any arbitrary degree of com- 

plexity, i.e., they are not regular, context-free or even recursively enumerable. 

2. PRELIMINARIES 

DEFINITION 2.1. For  u, v in A* write u +--~k v (or u ~-~ v, if k is understood) if and 
only if one of the following three conditions holds: 

(i) u = v; 

(ii) u = xy% and v = xy~'+lz, for some x, z e`4*,  y � 9  where for any 

E _C ̀ 4", E + = E* - -  {A}, and A is the empty word; 

(iii) u = xyk+iz and v = xykz, for some x, z �9 A*,  y �9 ̀ 4+. 

The  transitive closure of the relation +-~k is denoted by ~'~k (or --~). 

For  each k, ~'~k is obviously a congruence relation on `4" with respect to concatena- 

tion. The  congruence class containing u �9 ̀ 4* will be denoted by [u]k (or [u]). 

DEFINITION 2.2. Let  E be an arbitrary subset of .4*. E is called noncounting of 

order k (k ~ 0) if and only if the following holds: For  u, v, w �9 .4", uwkv �9 E if and 

only if uwk+lv �9 E. In  other words, E is noncounting if and only if it is a union of 

congruence classes of ~ k  for some k. 

DEFINITION 2.3. For  u, v �9 A*, u is said to be a prefix (suffix) of v if there exists 
a w �9 A*  such that uw - - v  (wu = v). u ~ v means that u +-+ v is false, similarly 
for ,-/~. r denotes the empty set, and I = A* = q~, where the bar stands for complemen- 
tation. Fk is the family of all noncounting events that are of order k but  not of any lower 
order, and Bk is the family of all noncounting events of order ~<k. 

LEMMA 2.1. I f  the congruence "~k on A *  is of finite index, then all noncounting 
events of order k on the alphabet A are regular. 

Proof. This  follows from the theorem of Myhil l  that an event is regular if and only 

if it is a union of some equivalence classes of a congruence relation over A* of finite 

index. See Rabin and Scott [7]. 

LEMMA 2.2. F o = B 0 = {r I}. 

Proof. I t  is clear that r is noncounting of every order. Let  E be noncounting of 
order  zero. Suppose x �9 E. I f  x = A, then A = AyOA �9 E implying that AylA = y �9 E 
by  Definition 2.2. Therefore, y �9 E for all y �9 A*, i.e., E ---- L If  x : ~  A, x = AxlZ �9 E 
implies Ax~ ---- A �9 E. So this reduces to the first case. 
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LEMMA 2.3. For each k, Bk is a Boolean algebra. 

Proof. It  is easy to verify (see Meyer [51) that if E = P w Q, P EFke,  Q E F % ,  
then E ~ Bmax[kv,%l. Also E ~Fk if and only if /~ EFk .  

3. NONCOUNTING EVENTS OF ORDER ~<1 OVER A Two-LETTER ALPHABET 

Let A = {0, 1} and let S 2 = A * / ~  1 be the monoid of congruence classes, called the 
free idempotent monoid generated by A, because $2 satisfies the relation x = x 2 for 
each x r $2, but is otherwise free. One can easily verify that S z contains exactly seven 
elements, namely, [A], [0], [1], [01], [101, [010] and [101]. Any other sequence of O's 
and l ' s  will contain a repeated subsequence and so is reducible to one of the above. 
Also it is easily shown that all seven elements are distinct. General methods of 
characterizing the equivalence classes are described in Section 4. 

Let ~/2 = (Q, M, [A] , - - )  be the finite automaton over the input alphabet A, 
where Q = {[x] [ [x] ~ $2} is the set of states, for a e A, [x I ~ Q the transition function 
is M([x], a) = [xa], [A] is the initial state, and the set of final states is not specified. 
The  state graph of d 2  is shown in Fig. 1. Let  ~ ( x ]  - (Q,  M, [A], {Ix]}) and let R~ 
be the set of words accepted by ~r which is clearly the set of all words that take 
~r from [A] to [x]. 

One can verify that 

R a = A 

Ro = 0 0 .  --ili-  = r 1 6 2  R1 = 11. = 05- 
Rot = 011 = 051 Rxo = 110 = 1~0 

Rol o = 00"110 = 0 I l i 0  = 0q~14S0 Rio 1 = 11011 = 140~I  

Note that dz[xl for x E S 2 is not a reduced automaton. For example, in z~C~lofl, the 
states corresponding to [I], [10] and [101] are all equivalent as are [0] and [010]. 
The  reduced version of ~'2[011 is shown in Fig. 2. 

By the construction of ~ 2  it is clear that for any y e A*, M([A], y) = [x I i f fy  ~ 1  x. 
The  regular expression R~ above denotes precisely the set of all words equivalent 
to x, i.e. R x = [x], where [x] is interpreted as a set of words. Thus  each equivalence 
class is a star-free event. As arbitrary noncounting events of order ~ 1  are unions 
of these equivalence classes they must be star-free also. Recall that B 1 , the set of all 
noncounting events of order ~< 1, is a Boolean algebra. The  events [x I denoted by R~ 
are clearly the atoms of this algebra and Ba has 27 elements, corresponding to the sub- 
sets of the set of seven atoms. 

The  automaton ~/2 can be considered as a universal automaton for B x in the sense 
that, if E s B~ and E = 0~+x [x], X_C $2,  then ~r = (Q,  M, [A], {[x] ] x e X}) 
accepts precisely E. The  reduced version of ~r must then be a homomorphic image 
of ~ .  
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Fro. 1. Automaton ~ .  

Fro. 2. Reduced version of dz[01 j . 

0,1 

4. NONCOUNTING EVENTS OF ORDER 41  OVER ARBITRARY FINITE ALPHABETS 

Using the results of Green and Rees [3] the characterization of Section 3 can be gener- 
alized to the case of an arbitrary finite alphabet. The  first part of this section through 
Corollary 4.5 is based entirely on their work. 

Let  S~ = A * / ~  1 be the free idempotent monoid generated by A (i.e. x = x ~, 
for all x e S~), where A has n letters. 

LEMMA 4.1. Two words in S~ are equivalent only if they contain the same letters. 
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Proof. Replacement of xy2z by xyz ,  or vice versa, in S ,  cannot eliminate any 
existing a~, i = I,..., n, nor can it introduce new ones. 

DEFINITION 4.2. Ck is the set of all elements of Sn that contain each of the letters 
al ..... ak �9 The  cardinality of Ck will be denoted by ck and that of S~ by Sn �9 

n n LEMMA 4.2. Sn = Zk=o (k) Ck , where c o = 1. 

Proof. Obviously, the eardinality of Ck is independent of any permutation on 
the set A = {a 1 ..... an}. For each ail .... , aik , with is ~ it for s :~  t, and is ~ {1,..., n}, 
for s = 1 .... , k, there exist ck words in Sn containing aq ,..., ai~. 

DEFINITION 4.2. The  initial mark of a word w in Sn is that letter "a"  whose earliest 
appearance (from the left) in w is farthest to the right. Thus  w = wlaw ~ and w 1 
contains all the letters in w except the letter "a."  The word w~ appearing to the 
left of this "a"  is called the initial of w. Similarly, the terminal mark of w is the letter 
"a"  whose last appearance in w is farthest to the left. The  terminal of w is the word 
to the right of this "a."  

LEMMA 4.3. Two words w and w' in S~ are equivalent (w ~'~1 w') i f  and only i f  they 

have the same initial marks, the same terminal marks, equivalent initials and equivalent 

terminals. 

Proof. By Lemma 4.1 it is sufficient to consider w, w' ~ C n .  By Lemma 2 of [3], 
if w ~-~, w', then w and w' have the same initial marks, the same terminal marks, 
equivalent initials, and equivalent terminals. By Lemma 5 of [3] the set G of all 
elements of C,~ which have initial u, initial mark a, terminal v, and terminal mark b 
is a group. G = {w ] w = uax = ybv,  for x, y ~ Sn} is idempotent since it is a subgroup 
of S , .  Therefore it has only one element (i.e., w ~ G implies w ~ uabv). Now if 
w ~ uabv and w' ~ u'abv', with u ~ u' and v ~-~ v', then w ~ w'. 

THEOREM 4.4. cn and sn are f ini te for  all f ini te n. Furthermore, cn = n~c~_l = 
n=(n - -  1)'(n --  2) s - - ' .  

COROLLARY 4.5. sl = 2, s 2 = 7, s a = 160, sl = 332381, etc. 

THEOREM 4.6. (McLean [4]). s. - -  1 = )-~rn__l (~) I-Ii=l (r - -  i + 1) 3'. 

A simplified characterization of idempotent monoids can be achieved by noting 
the symmetry between possible initials and terminals of words in S n . 

COROLLARY 4.7. The idempotent monoid Sn has isomorphic proper endomorphs 
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I t  _ _  (i.e., homomorphic images which are subsets of  S . )  Sn' and S~ such that S .  = S~' �9 S n - -  
{xy I x ~ Sn' and y ~ S~}, for  n z 2, 3, . . . .  

Proof. Let S~' be the quotient of S~ under the congruence w 1 ~ '  w 2 if and only 
if w 1 and w~ have the same initial marks and equivalent initials. Similarly, let S~ be 
the quotient of S,~ under the congruence w 1 ~ "  w 2 if and only if w 1 and w 2 have 
the same terminal marks and equivalent terminals. Clearly Sn' and S~ are isomorphic 
and by Lemma 4.3 Sn = Sn' �9 S~.  S~ will be equal to S~' and S~ only for n = 1. 

THEOREM 4.8. Given an alphabet A = {a 1 ,..., an}, one can construct a universal 
finite automaton d n such that any reduced automaton accepting a noncounting event 
of order <~ 1 over A is a reduced version of zer . 

Proof. As in the case of A = {0, 1), we construct the automaton d ~  = 
{Q, M, [A], - } ,  where Q = {[x] I x 6 S~}, [A] is the initial state and M([x], a) = [xa], 
x e Sn �9 As S~ is finite, d ~  is finite and any arbitrary noncounting event of order <~ 1 
over A can be considered as the set of words in A* that take d n from [A] to some set of 
final states QF _C Q. The reduced automaton corresponding to this event will simply 
be a reduced version of d n . 

COROLLARY 4.9. There exist 2 s. regular noncounting events of order 4 1  over 
an alphabet of n letters. 

Proof. The number of possible sets of final states in ~r is 2'-. 

Remark.  Recall that by Lemma 4.3 two words w a and w2 take zd~ to the same state 
if and only if w 1 and w 2 have the same initial marks, the same terminal marks, and 
equivalent initials and terminals, respectively. The  Sn distinct regular languages, each 
of them having a particular state of d ~  as the final state, form the atoms of the finite 
Boolean algebra B 1 over the alphabet A = {al .... , an}. The regular language L 
corresponding to a particular initial u, initial mark ak,  terminal mark a~,  and terminal 
v can be expressed by a star-free expression as follows: L = L ~ , a k A * n  A*a~,Lv = 
L~,akI n Ia~,Lv, where L u and L~ represent the sets of words in Sn that are equivalent 
to u and v, respectively. Lu and L~ can in turn be replaced by expressions similar 
to L. Note, however, that u and v can contain at most (n - -  1) letters and instead of 
I one must use (A - -  ak)* = IakI  for Lu and Ia~I  for L~. The  recursive application 
of this process will result in a star-free expression for L in at most (n - -  1) steps. 

Our final result in this section sets an upper bound on the length of representatives 
of minimal length for the equivalence classes of A* under the relation x ~ = x, for 
all x e A * .  

THEOREM 4.10. A word w e  Sn can be represented as a product aq "" a i , ,  
ik e{1 ..... n), k = 1,..., m, with m <~ 5.2 n-2 - -  2, for n = 2, 3, . . . .  For n = 1, m <~ 1. 



NONCOUNTING EVENTS 47 

Proof .  Let  Mn be the desired bound for S n .  By the proof  of Lemma 4.3, if 
w ~ Sn+x has initial u, initial mark a, terminal mark b and terminal v, then w , ~  uabv.  

Therefore,  Mn+ 1 ~ 2 M  n + 2, as u and v are equivalent, respectively, to words no 

longer than M ~ .  Consider the difference equation M~+ 1 = 2Mn + 2. Its solution 
is of the form M n = C2 '~ + D. C2 n+l + D = 2(C2 n + D) + 2 implies that D = - -2 .  

We also have the initial condition M e = 3 as ala~a 1 is irreducible in S e . Therefore,  
3 = C21 - -  2 and C = 5/4. The  reason M 1 is treated separately is that M e = 2 M  1 + 1 

so that a better bound is obtained if Ms is used as the initial condition. 
The  bound obtained above cannot be improved. The  proof is by induction on n, 

with n = 2 as the basis. Let  w,  =ail " "  aim be a word of length m not equivalent 
to a shorter word over the alphabet {a~ ,..., an}, where we can assume that ai,, = a~. 
Let  w~' = a 6 ."  a~m, where for each k, jk = ik + 1, and let wn r be the reverse of Wn, 

wn r = ai m "'" ai~ �9 Then  Wn+l = wna~+lal(wl ' )  r is of length 2m + 2, and one verifies 
that Wn+~ is not equivalent to a shorter word. 

5. NONCOUNTING EVENTS OF ORDER ~ 2  OVER AN ALPHABET 

OF TWO OR MORE LETTERS 

We first establish some prel iminary results necessary to show that the index of 
the congruence "~k for k ~ 2 over an alphabet of two or more letters is infinite. I t  is 
sufficient to prove this for k = 2 and a two letter alphabet;  in the following A = {0, 1} 
and by +-+, ,~  the relations ~--~2, "~2 are understood. 

DEFINITION 5.1. Let  u E A*; u can be written uniquely in the form 
Oql i~ "" Oi2m-lli~mOi2m+l, where m > /0 ,  i 1 ~ 0, iem+l/> 0, i k />  1 for 2 ~< k ~ 2m. 

Denote rl(u ) = 0~11 j . . . .  lJ2m0 j~m+l, where jk = min(ik , 2). Obviously u ~ rl(u ) for 
each u ~ A*. 

LEMMA 5.1. 

Proof. 

(i) 
(ii) 

we have 

(a) 
(h) 

We can 

I f  u +-+ v then rl(u ) +-~ rl(v) ,  f o r  any  u, v in A * .  

In  the definition of +-+ there are three cases, 

u = v; trivially also rx(u ) = rx(v ). 

u = xy2z,  v = xy~z; 

the following subcases: 

y = O k o r y  = 1 k, k >~ 1, then obviously q ( u )  = q (v ) .  

y =7(= O k and y 3& 1 k. 

then assert the following: for any s, t in A* there is a prefix s' of rl(s ) such that  
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rl(st ) = s'rl(t ) 
write: 

r l ( y z  ) = 

r l (y~z)  = 

r l (y3z )  = 

r (u) = 

r l ( v )  = 

and there is a suffix t '  of t such that rl(st ) = rt(s ) t'. Using this we can 

r l (y  ) z ' ,  where z '  is a suffix of rl(g); 

y ' r l ( y  ) z ' ,  where y '  is a prefix of rl(y);  

y ' y ' r l ( y  ) z '  (we get the same prefix of y); 

rl(xy2z)  = x ' r l (y~z)  = x ' y ' r l ( y  ) z ' ,  where x' is a prefix of rl(x); 

rl(xy3z)  = x'  y '  y ' ra (y  ) z ' .  

Since y '  is a prefix of r l ( y  ) we have shown that rl(u ) +-~ r l (v  ) holds. 

(iii) The case u ----- xy3z, v = xy2z is symmetric with (ii). 

DEFINITION 5.2. Let u ~ A*. I f  u does not have 01 as a substring, denote r~(u) ---- u. 
Otherwise, u can be written uniquely in the form u0(01)~xul(01) i~ ... Um_x(O1)imUm, 
where m >/ 1, ui is in A* and does not have 01 as a substring for 0 ~< i ~ m, 
u i=7(=A for 1 ~ i ~ m - -  1, and i j / >  1 for 1 ~ j ~ m .  Then denote r2(u ) = 
uo(01)hul(01) j2 "- Um_l(01)JmUm, where jk = min(ik, 2) for 1 ~ k ~ m. 

DEFINITION 5.3. A string u in A* is called simple if u = x(10)ky, k ~ 2, implies 
x = x'0, y = ly ' ,  for some x' and y '  in A*. 

LEMMA 5.2. Let  u, v ~ A * ,  wi th  u simple u ~ v. Then v is simple and  r2(u ) ~ r2(v ). 

Proof.  The first part of lemma can be easily verified. To prove the second part we 
consider the three cases in the definition of ~ ; 

(i) u = v, trivially also r~(u) = r2(v); 

(ii) u = xy2z, v = xy3z; 

we have the following subcases: 

(a) y = (01) k or y = (10) k, then obviously r2(u ) = r2(v); 

(b) y ~ (01) k and y V6 (10) k. 

The  following two assertions can be easily verified: 

Assertion A .  I f  s @ st0 or t =7(: 10101t 1 for all s 1 , t 1 ~ A*, then there exists a prefix 
s' of r2(s ) such that r2(st ) = s'r~(t). 

Assert ion B .  If  s 5& tl01010 or t ~ It  1 for all s 1 , t 1 ~ A*, then there exists a suffix 
t '  of r2(t ) such that r2(st ) = r2(s ) t'. 

We consider now three subcases of (b); 

(bl) Let  y = 10101y' for some y ' .  Then, since u is simple, the last symbol of 
both x and y must be 0 and we can "move the squared and cubed substrings one 
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symbol to the right," i.e. there exist a, b, c in A* such that u = ab2c, v = ab3c, x = aO, 
0y = b0 and 0z = c. Assertion A holds for pairs of strings (a, b) and (b, b); since 
the first symbol of c is 0, Assertion B is fulfilled for the pairs of strings (b, c). 

(b2) Let y = y'01010 for some y ' .  Then  since u is simple, the first symbol of 
both y and z must be 1 and there exist a, b, c in A* such that u = ab~c, v = ab3c, 
xl = a, y l  = lb and z = lc. Assertion B is fulfilled for the pair (b, c); since the last 
symbol of a is 1 also Assertion A is fulfilled for pairs (a, b) and (b, b). 

(b3) I f  y is neither of the form 10101y' nor of the form y'01010 let a = x, 
b = y, c = z. Therefore, in all subcases of (b) we have: 

By Assertion B 

r2(bc ) = r2(b ) c', where c' is a suffix of r2(c); 

by Assertion A 

r2(b~c) = b'r2(bc ) = b'r2(b ) c', where b' is a prefix of r2(b); 

by Assertion A 

r2(u) = r2(ab2c) - -  a'r2(b2c) = a'b'r~(b) c', where a' is a prefix of r2(a); 

and similarly 

r2(v ) = r~(ab3c) = a'b'b'r2(b ) c'. 

Since b' is a prefix of r2(b ) we have shown that r~(u) +-~ r2(v ) holds. 

(iii) The  case u = xy3z, v = xy2z, is symmetric to (ii). 

Note .  The  assumption of simplicity in Lemma  5.2 is essential as shown by 
following example: 

u - -  0(10101)(10101), v = 0(10101)(10101)(10101) 

r2(u ) = 010110101, r2(v ) = 01011010110101. 

Obviously, u ~ v and r2(u ) ~ r2(v), but r2(u ) ~ r2(v ). 

DEFINITION 5.4. For w in A* the reduced f o r m  of w is defined by r(w)  = r2(rl(w)). 

COROLLARY 5.3. I f  U, v ~ A * ,  u is simple and  u ~ v then v is simple and  r(u) +-+ r(v). 

Proof.  Follows from Lemma  5.1, Lemma  5.2, and the fact that rl(u ) is simple 
for simple u. 

DEFINITION 5.5. Let h be the homomorphism from A* into A* defined by 
h(h) = A, h(O) = 001, h(m) = O11, h(xy)  = h (x )h (y ) .  
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LEMMA 5.4. Let  x ~ A *  and h(x) be of  the form uw'v ,  where u, v, w ~ A* ,  I w [ >~ 3, 

p >~ 2. (l w I is the length of  w.) Then there exist a, b, c ~ A *  such that x = abPc and 

h(abkc) = uwkv for  each k >~ 2. 

Note. We have h(x)----h(ab'c)----h(a)(h(b))~ h(c) but  not necessarily h ( a ) =  u, 

h(b)  = w ,  h(c)  = v .  

Proof. Since w 2 is a subword of h(x), w must be of one of the following forms for 
some t e A*. 

(a) 001t, 

(b) Ol l t ,  

(c) OltO, 

(d) l l tO,  

(e) ltO0, 

(f) it01. 

Cases (a) and (b). Since w * is a substring of h(x) of the form 001t001t or 011t011t 
the length of w has to be a mult iple of three and thus there exist a, b, c in A* such that 

u = h(a), w -~ h(b), v ---- h(c) and a, b, c fulfil the stated requirements. 

Case (c). Since w ~ is a substring of h(x) of the form 01t001t0 either w = 010 if t = h 

or w = 010t0, t E A +. In  both cases the last symbol of u must  be 0 and we can write 
h(x) = UlWl~V 1 , where ul0 = u, wl0 ---- 0w and v x ---- 0v. Since the lengths of u 1 , W 1 
and v 1 are multiples of three there exist a, b, c ~ A*  such that h(a) = u l ,  h(b) = w, 

h(c) = Vl , x = able. Obviously, h(abkc) = h(a)(h(b)) k h(c) = u~wlkv~ for each 
k > /2 .  Since wlk0 = 0w k for each k, also h(abkc) = uw*v holds for each k > /2 .  

Case (d). Since w is a substring of h(x) of the form 1 lt01 l t0  the last symbol of u must  
be 0; the rest is the same as in the case (c). 

By interchaning zeros and ones and reversing the strings, case (e) becomes case (d) 
and case (f) becomes case (c). 

LEMMA 5.5. 

Proof. 1. 

then obviously 

2. Let  

x ~-~y i f  and only i f  h(x) ~-. h(y) .  

Let  

x = xl  *-~ x~ ~-* "" ~-~ xn = y,  

h(x) = h(xa) ~ h(x2) +-~ "" ~ h(x , )  = h(y).  

h(x) = tl +--~ t2+--~ ...~--~ t ,  = h(y).  
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Denote zi  = r(ti) for 1 ~< i ~ n. For  every s in A *  h(s) has no substrings of the form 
w a, where 1 <~ I w [ <~ 2; thus r(h(s)) = h(s) for every s. Fur thermore,  it is clear that 

h(s) is simple. Hence, by  the repeated use of Corollary 5.3 

h ( x )  = z l  ~ z~  ~ . . .  ~ z .  = h ( y ) .  

We now construct by induction a sequence of strings x a , x 2 ,..., x ,  in A*  such that 

h(xi) = zi  for 1 ~< i ~ n and 

X ~-Xl+--}X2~--)"  " " r  n ~ y .  

Define x I ~- x. Suppose now that  x l ,  xz ,..., x k have already been constructed for 

some k, 1 ~< k < n. Since z k +-+ zk+ 1 , we have three possibilities by the definition 
of~-~ ; 

(i) zk = Zk+l;  def ine  xk+ 1 = x k ,  then h(xk+l) = h(xk) = zk+l = zk ; 

(ii) zk = uw~v and zk+l ---- uwav for some u, v E A*, w ~ A +. 

By the induction assumption zk = h(xk) for some xk and therefore zk has no 

substring of the form (10) 5, j >~ 2. Since zk+l is reduced it does not contain any 
substring of the form s m, m >~ 3 for s E {0, 1, 00, 11, 01}. Since w 2 is a substring of zk 

and w ~ is a subs t r ing  of zk+l it follows that I w l  >~ 3. Thus  Lemma 5.4 is appli-  
cable and there exist a, b, c in A* such that xk : able and h(ab3c) : uwav : Zk+l �9 

Define xk+l = ab3c; obviously h(Xk+l) = zk+l and x~ +-* xk+t. 

(iii) z~ = uwSv and Zk+l - -  uw2v for some u, v e A*, w e A +. 

In  this case w a is a substring of zk which is both reduced and by the induction assump- 
tion it is without any substr ing of the form (10) j, j / >  2. Thus  again ] w I >~ 3 and 
by Lemma 5.4 there exist a, b, e in A* such that x k : abac and h(abZc) = uw2v : Zk+l �9 
Define xk+l --  ab2c; obviously h(xk+l) = zk+l and xk +-+ Xk+l �9 

THEOREM 5.6. Let  i, j ~ 1 then hi(O) ~-~ hi(O) if and only if i = j .  

Proof. 1. I f  i = j then hi(O) = hi(O). 

2. There  is at least one occurrence of the symbol I in hk(0) for each k / >  l,  
thus hk(0) v~ 0 for k / >  1. Assume hi(O) ~ hi(O) for some i > j ~> 1. Then  hi-J(O) , , ,  0 
by the repeated use of Lemma 5.4. This  is a contradiction. 

COROLLARY 5.7. The index of  the congruence relation ~ 2  is infinite. 

In  [9] it was shown that there exists an infinite subset X of {0, 1, 2}* such that no 

string in X has the form xyZz with y in {0, 1, 2} +. I t  was also shown in [9] that there 

exists an infinite subset Y of {0, 1}* such that no string in Y is of the form xyaz, with  
y in {0, 1} +. 
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LEMMA 5.8. Let E 1 C X and E 2 C Y then E 1 and E 2 are noncounting events of order 
2 and of order 3, respectively. 

Proof. Obvious. 
From the uvwxy-Theorem [2] it follows that X and Y are not context-free languages. 

Because of Lemma  5.8 we can construct by diagonalisation a noncounting event of 
order 3 over an alphabet with at least two letters or a noncounting event of order 2 
over an alphabet with at least three letters which is not context-sensitive or even 
recursively enumerable. Such events exist also for order 2 and a 2qetter  alphabet. 
In  this case we can diagonalise over an infinite set of mutually nonequivalent strings 
which was proven to exist in Theorem 5.6 and then consider not the direct result of 
the diagonalisation but the union of corresponding congruence classes. 

In  Lemma  2.3 we have shown that the family of all noncounting events of order ~<k 
over an finite alphabet is a Boolean algebra. This  Boolean algebra is atomic, the atoms 
are the congruence classes of order k. Theorem 4.4 shows that Bk is finite for k ~ 1 
and Corollary 5.7 shows that Bk is infinite for k >~ 2 if the alphabet has two or more 
letters. 

Let  Rk be the family of all regular noncounting events of order k over an alphabet A. 
R k is also a Boolean algebra, a subalgebra (proper for k >~ 2 and an alphabet with at 
least two letters) of Bk �9 For k ~ 1 the equivalence classes are regular, thus Bk and R k 
are identical. For order >~2 and an alphabet with at least three letters or for order ~>3 
and an alphabet with at least two letters Bk is infinite since in these cases there exist 
an infinite number  of congruence classes containing exactly one element which are 
of course regular. These singletons are elements of X, Y, respectively. 

We now show that R~ is also infinite for a 2-letter alphabet. In  the following 
A = {0, 1}, k = 2, and the maps h and r are as defined above. 

LEMMA 5.9. Let x, z ~ A*, with h(x) ~ r(z). Then there exists a y ~ A*  such that 
h ( y )  = r(z) .  

Proof. Follows from the proof of Lemma  5.5. 

LEMMA 5.10. [hi+l(q)] = r-l(h([hi(q)])) for each q ~ A *  and i >~ O. 

Proof. Let w ~ [hi+l(q)], i.e. w ~ hi+l(q). Since r(w) ~ w we have r(w) ~,~ hi+l(q). 
By Lemma  5.9 there exists a y such that h(y) = r(w). By Lemma 5.5 y ~ hi(q), thus 
r(w) ~ h([hi(q)]). Hence r-~(r(w)) C r-l(h([hi(q)])). Since w ~ r-l(r(w)) and w is an 
arbitrary element of [hi+l(q)] we have [hi+l(q)] C r-l(h([hi(q)])). The  reverse inclusion 
is obvious. 

THEOREM 5. l 1. [hi(0)] is regular for each i >/O. 

Proof. In  [2] a device called sequential transducer is defined and it is shown that 
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regular sets are preserved by sequential t ransducer  mappings.  Th e  map r -1 is realized 
by the sequential t ransducer  S = (K, A, A, H, sa) , where 

and 

K = {s a , s o , s I , s00, $01 , Sll , 80101} 

H = {(q, O, O, So) : q e ( K  - -  {So, Soo}) } (J {(q, 1, 1, $1) : q @ {SA, SO, SO0}} 

W {(q, 1, 1, $11) : q e {Sl, sol, Solol}} 

v {(So, 1, 1, s01 ), (So0,1, 1, s01 ), (s o , 0, 0, So0 ), (s01,01, 01, s0101 ), 

(s00, A, 0, s00), (s11, A, 1, Sll ), (S01ol, A, 01, S01ol)}. 

Since regular sets are closed under  homomorphisms ,  r-l(h([hi(O)])) is regular if 
[hi(0)] is regular. Since [0] is regular the proof  can be completed by induct ion using 
L e m m a  5.10. 

COROLLARY 5.12. For order k > / 2  i f  A has at least two letters the Boolean algebra 

Rk is infinite. 

Proof. We can obviously restrict ourselves to k = 2 and A = {0, 1}. By T h e o r e m  
5.11 {[hi(0)] : i ---- 0, 1,...} C R~. By T h e o r e m  5.6, [hi(0)] =fi [h~(0)] for i =# j .  

REFERENCES 

1. R. S. COHEN AND J. A. BRZOZOWSKI, On star-free events, in "Proceedings of the Hawaii 
International Conference on System Sciences," pp. 1-4, University of Hawaii Press, Honolulu, 
Hawaii, 1968. 

2. S. GINSBURG, "The Mathematical Theory of Context-Free Languages," McGraw-Hill, 
New York, 1966. 

3. J. A. GREEN AND D. REES, On semigroups in which x ~ = x, Proc. Cambridge Philos. Soc. 48 
(1952), 35-40. 

4. D. MCLEAN, Idempotent semigroups, Amer. Math. Monthly 61 (1954), 110-113. 
5. A. R. MEYER, A note on star-free events, J. Amer. Comput. Mach. 16 (1969), 220-225. 
6. S. PAPERT AND R. McNAUGHTON, On topological events, in "Theory of Automata," University 

of Michigan Engineering Summer Conference, Ann Arbor, Mich., 1966. 
7. M. O. RABIN AND n.  SCOTT, Finite Automata and their decision problems, I B M  J. Res. 

Develop. 3 (1959), 114-125. 
8. M. P. SeHOTZENBEaGEa, On a family of sets related to McNaughtons L-Language, in "Automata 

Theory," (E. R. Caianiello, Ed.), pp. 320-324, Academic Press, New York, 1966. 
9. A. THUE, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Videnskabssels- 

kabets Skrifter, I Mat.-Nat. Kl., Christiania, 1912. 


